(a) First collision (between A and B ):
The total momentum is conserved:
\begin{aligned}m \nu_{A}+m \nu_{B} & =m \nu_{A}^{\prime}+m \nu_{B}^{\prime} \\\nu_{0} & =\nu_{A}^{\prime}+\nu_{B}^{\prime}\quad\text{(1)}\end{aligned}
Relative velocities:
\begin{gathered}\left(\nu_{A}-\nu_{B}\right) e=\left(\nu_{B}^{\prime}-\nu_{A}^{\prime}\right) \\\nu_{0} e=\nu_{B}^{\prime}-\nu_{A}^{\prime}\quad\quad\text{(2)}\end{gathered}
Solving Equations (1) and (2) simultaneously,
\begin{gathered}\nu_{A}^{\prime}=\frac{\nu_{0}(1-e)}{2} \blacktriangleleft\\\nu_{B}^{\prime}=\frac{\nu_{0}(1+e)}{2}\blacktriangleleft\end{gathered}
(b) Second collision (between B and C ):
The total momentum is conserved.
m \nu_{B}^{\prime}+m \nu_{C}=m \nu_{B}^{\prime \prime}+m \nu_{C}^{\prime}
Using the result from (a) for \nu_{B}^{\prime}
\frac{\nu_{0}(1+e)}{2}+0=\nu_{B}^{\prime \prime}+\nu_{C}^{\prime} (3)
Relative velocities:
\left(\nu_{B}^{\prime}-0\right) e=\nu_{C}^{\prime}-\nu_{B}^{\prime \prime}
Substituting again for \nu_{B}^{\prime} from (a)
\nu_{0} \frac{(1+e)}{2}(e)=\nu_{C}^{\prime}-\nu_{B}^{\prime \prime} (4)
Solving equations (3) and (4) simultaneously,
\nu_{C}^{\prime}=\frac{1}{2}\left[\frac{\nu_{0}(1+e)}{2}+\nu_{0}(1+e) \frac{(e)}{2}\right] \\ \begin{aligned}\nu_{C}^{\prime} & =\frac{\nu_{0}(1+e)^{2}}{4} \blacktriangleleft\\\nu_{B}^{\prime \prime} & =\frac{\nu_{0}\left(1-e^{2}\right)}{4}\blacktriangleleft\end{aligned}
(c) For n spheres
n balls
(n-1) th collision,
we note from the answer to part (b) with n = 3
\nu_{n}^{\prime}=\nu_{3}^{\prime}=\nu_{C}^{\prime}=\frac{\nu_{0}(1+e)^{2}}{4}
or \quad \nu_{3}^{\prime}=\frac{\nu_{0}(1+e)^{(3-1)}}{2^{(3-1)}}
Thus, for n balls
\nu_{n}^{\prime}=\frac{ν_{0}(1+e)^{(n-1)}}{2^{(n-1)}}\blacktriangleleft
(d) For n = 5, e = 0.90,
from the answer to part (c) with n = 5
\begin{aligned}\nu_{B}^{\prime} & =\frac{\nu_{0}(1+0.9)^{(5-1)}}{2^{(5-1)}} \\& =\frac{\nu_{0}(1.9)^{4}}{(2)^{4}}\end{aligned}
\nu_{B}^{\prime}=0.815 \nu_{0}\blacktriangleleft