Question 13.159: To apply shock loading to an artillery shell, a 20-kg pendul...

To apply shock loading to an artillery shell, a 20-kg pendulum A is released from a known height and strikes impactor B at a known velocity \mathbf{ v }_0. Impactor B then strikes the 1-kg artillery shell C. Knowing the coefficient of restitution between all objects is e, determine the mass of B to maximize the impulse applied to the artillery shell C.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First impact: A impacts B. \quad m_{A}=20 \mathrm{~kg}, m_{B}=?

Impulse-momentum: \quad\Sigma m \mathbf{v}+\Sigma \mathbf{I m} \mathbf{p}_{1 \rightarrow 2}=\Sigma m \mathbf{v}_{2}

Components directed left: 

\begin{aligned}& m_{A} \nu_{0}=m_{A} \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime} \\& 20 \nu_{0}=20 \nu_{A}^{\prime}+m_{B} \nu_{B}^{\prime}\quad\text{(1)}\end{aligned}

Coefficient of restitution:

\begin{aligned}\nu_{B}^{\prime}-\nu_{A}^{\prime} & =e\left(\nu_{A}-\nu_{B}\right) \\\nu_{B}^{\prime}-\nu_{A}^{\prime} & =e \nu_{0} \\\nu_{A}^{\prime} & =\nu_{B}^{\prime}-e \nu_{0}\quad\text{(2)}\end{aligned}

Substituting Eq. (2) into Eq. (1) yields

\begin{aligned}20 \nu_{0} & =20\left(\nu_{B}^{\prime}-e \nu_{0}\right)+m_{B} \nu_{B}^{\prime} \\20 \nu_{0}(1+e) & =\left(+m_{B}\right) \nu_{B}^{\prime} \\\nu_{B}^{\prime} & =\frac{20 \nu_{0}(1+e)}{20+m_{B}}\quad\text{(3)}\end{aligned}

Second impact: B impacts C. \quad m_{B}=?, m_{C}=1 \mathrm{~kg}

Impulse-momentum: \quad\Sigma m \mathbf{v}_{2}+\Sigma \mathbf{I m p}_{2 \rightarrow 3}=\Sigma m \mathbf{v}_{3}

Components directed left:

\begin{aligned}& m_{B} \nu_{B}^{\prime}=m_{B} \nu_{B}^{\prime \prime}+m_{C} \nu_{C}^{\prime \prime} \\& m_{B} \nu_{B}^{\prime}=m_{B} \nu_{B}^{\prime \prime}+\nu_{C}^{\prime \prime}\quad\text{(4)}\end{aligned}

Coefficient of restitution:

\begin{aligned}& \nu_{C}^{\prime \prime}-\nu_{B}^{\prime \prime}=e\left(\nu_{B}^{\prime}-\nu_{C}^{\prime}\right) \\& \nu_{C}^{\prime \prime}-\nu_{B}^{\prime \prime}=e \nu_{B}^{\prime} \\& \nu_{B}^{\prime \prime}-\nu_{C}^{\prime \prime}=e \nu_{C}^{\prime}\quad\text{(5)}\end{aligned}

Substituting Eq. (4) into Eq. (5) yields

\begin{aligned}m_{B} \nu_{B}^{\prime} & =m_{B}\left(\nu_{C}^{\prime \prime}-e \nu_{B}^{\prime}\right)+m_{C} \nu_{C}^{\prime \prime} \\m_{B} \nu_{B}^{\prime}(1+e) & =\left(1+m_{B}\right) \nu_{C}^{\prime \prime} \\\nu_{C}^{\prime \prime} & =\frac{m_{B} \nu_{B}^{\prime}(1+e)}{1+m_{B}}\quad\text{(6)}\end{aligned}

Substituting Eq. (3) for \nu_{B}^{\prime} in Eq. (6) yields

\nu_{C}^{\prime \prime}=\frac{20 m_{B} \nu_{0}(1+e)^{2}}{\left(20+m_{B}\right)\left(1+m_{B}\right)}

The impulse applied to the shell C is

m_{C} \nu_{C}^{\prime \prime}=\frac{(1)(20) m_{B} \nu_{0}(1+e)^{2}}{\left(20+m_{B}\right)\left(1+m_{B}\right)}

To maximize this impulse choose m_{B} such that

Z=\frac{m_{B}}{\left(20+m_{B}\right)\left(1+m_{B}\right)}

is maximum. Set d Z / d m_{B} equal to zero.

\begin{aligned}\frac{d Z}{d m_{B}}=\frac{\left(20+m_{B}\right)\left(1+m_{B}\right)-m_{B}\left[\left(20+m_{B}\right)+\left(1+m_{B}\right)\right]}{\left(20+m_{B}\right)^{2}\left(1+m_{B}\right)^{2}} & =0 \\20+21 m_{B}+m_{B}^{2}-m_{B}\left(21+2 m_{B}\right) & =0 \\20-m_{B}^{2} & =0\end{aligned}

m_{B}=4.47 \mathrm{~kg}\blacktriangleleft

13.159.
13.159..

Related Answered Questions