Question 11.183E: To refresh air in a room, a counterflow heat exchanger is mo...

To refresh air in a room, a counterflow heat exchanger is mounted in the wall, as shown in Fig. P11.122. It draws in outside air at 33 F, 80% relative humidity and draws room air, 104 F, 50% relative humidity, out. Assume an exchange of 6 lbm/min dry air in a steady flow device, and also that the room air exits the heat exchanger to the atmosphere at 72 F. Find the net amount of water removed from room, any liquid flow in the heat exchanger and (T,ϕ)(T, \phi) for the fresh air entering the room.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

State 3:        Pg3=1.0804  psia,hg3=1106.73  Btu/lbmP _{ g 3}=1.0804   psia , h _{ g 3}=1106.73   Btu / lbm ,

Pv3=ϕ3Pg3=0.5402,w3=0.622Pv3/(Ptot Pv3)=0.02373P _{ v 3}=\phi_{3} P _{ g 3}=0.5402, \quad w _{3}=0.622 P _{ v 3} /\left( P _{\text {tot }}- P _{ v 3}\right)=0.02373

The room air is cooled to  72  F<Tdew 1=82  F72   F < T _{\text {dew } 1}=82   F   so liquid will form in the exit flow channel and state 4 is saturated.

4:    72 F,ϕ=100%Pg4=0.3918  psia,hg4=1092.91  Btu/lbm72  F , \phi=100 \% \Rightarrow P _{ g 4}=0.3918   psia , h _{ g 4}=1092.91   Btu / lbm ,

w4=0.017,hf4=40.09  Btu/lbm w _{4}=0.017, h _{ f 4}=40.09   Btu / lbm

1:    33 F,ϕ=80%Pg1=0.0925  psia,hg1=1075.83  Btu/lbm33  F , \phi=80 \% \Rightarrow P _{ g 1}=0.0925   psia , h _{ g 1}=1075.83   Btu / lbm,

Pv1=ϕ1Pg1=0.074  psia,w1=0.00315P _{ v 1}=\phi_{1} P _{ g 1}=0.074   psia , \quad w _{1}=0.00315

CV 3 to 4:      m˙liq,4=m˙a(w3w4)=6(0.023730.017)=0.04  lbm/min\dot{ m }_{ liq , 4}=\dot{ m }_{ a }\left( w _{3}- w _{4}\right)=6(0.02373-0.017)= 0 . 0 4   lbm / min

CV room:

m˙v,out=m˙a(w3w2)=m˙a(w3w1)=6(0.023730.00315)=0.1235  lbm/min\begin{aligned}\dot{ m }_{ v , out } &=\dot{ m }_{ a }\left( w _{3}- w _{2}\right)=\dot{ m }_{ a }\left( w _{3}- w _{1}\right) \\&=6(0.02373-0.00315)= 0 . 1 2 3 5   lbm / min\end{aligned}

CV Heat exchanger:      m˙a(h~2h~1)=m˙a(h~3h~4)m˙liqhf4\dot{ m }_{ a }\left(\tilde{ h }_{2}-\tilde{ h }_{1}\right)=\dot{ m }_{ a }\left(\tilde{ h }_{3}-\tilde{ h }_{4}\right)-\dot{ m }_{ liq } h _{ f 4}

Cp a(T2T1)+w2hv2w1hv1=Cp a(T3T4)+w3hv3w4hv4(w3w4)hf40.24(T233)+w2hv23.3888=0.24(10472)+26.262718.57950.26980.24 T2+0.00315  hv2=26.402  btu/lbm\begin{gathered}C _{ p  a }\left( T _{2}- T _{1}\right)+ w _{2} h _{ v 2}- w _{1} h _{ v 1}= C _{ p  a }\left( T _{3}- T _{4}\right)+ w _{3} h _{ v 3}- w _{4} h _{ v 4}-\left( w _{3}- w _{4}\right) h _{ f 4} \\0.24\left( T _{2}-33\right)+ w _{2} h _{ v 2}-3.3888=0.24(104-72)+26.2627-18.5795-0.2698 \\0.24  T _{2}+0.00315   h _{ v 2}=26.402   btu / lbm\end{gathered}

Trial and error on  T2:T2=95.5  F,Pg2=0.837  psia,Pv2=Pv1T _{2}: \quad T _{2}= 9 5 . 5   F , \quad P _{ g 2}=0.837   psia , P _{ v 2}= P _{ v 1}

ϕ=Pv2/Pg2=0.074/0.837=0.088   or   ϕ=9%\phi= P _{ v 2} / P _{ g 2}=0.074 / 0.837=0.088 \text {   or   } \phi=9 \%

 

 

 

183

Related Answered Questions