Question 31.8: TUNING A RADIO The series circuit in Fig. 31.20 is similar t...

TUNING A RADIO

The series circuit in Fig. 31.20 is similar to some radio tuning circuits. It is connected to a variable-frequency ac source with an rms terminal voltage of 1.0 V. (a) Find the resonance frequency. At the resonance frequency, find (b) the inductive reactance X_L, the capacitive reactance X_C, and the impedance Z; (c) the rms current I_{rms}; (d) the rms voltage across each circuit element.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

IDENTIFY and SET UP:

Figure 31.20 shows an L-R-C series circuit, with ideal meters inserted to measure the rms current and voltages, our target variables. Equation (31.32) gives the formula for the resonance angular frequency \omega_{0}, from which we find the resonance frequency f_0. We use Eqs. (31.12) and (31.18) to find X_L and X_C, which are equal at resonance; at resonance, from Eq. (31.23), we have Z = R. We use Eqs. (31.7), (31.13), and (31.19) to find the voltages across the circuit elements.

V_{R}=I R                           (31.7)

X_{L}=\omega L                           (31.12)

V_{L}=I X_{L}                           (31.13)

X_{C}=\frac{1}{\omega C}                           (31.18)

V_{C}=I X_{C}                           (31.19)

Z=\sqrt{R^{2}+[\omega L-(1 / \omega C)]^{2}}                           (31.23)

\omega_{0}=\frac{1}{\sqrt{L C}}                           (31.32)

EXECUTE:

(a) The values of \omega_{0} and f_{0} are

\begin{aligned}\omega_{0} &=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\left(0.40 \times 10^{-3}\mathrm{H}\right)\left(100 \times 10^{-12} \mathrm{~F}\right)}} \\&=5.0 \times 10^{6}\mathrm{rad} / \mathrm{s} \\f_{0} &=8.0 \times 10^{5} \mathrm{~Hz}=800 \mathrm{kHz}\end{aligned}

This frequency is in the lower part of the AM radio band.
(b) At this frequency,

\begin{aligned}&X_{L}=\omega L=\left(5.0 \times 10^{6} \mathrm{rad} / \mathrm{s}\right)\left(0.40 \times 10^{-3} \mathrm{H}\right)=2000 \Omega \\&X_{C}=\frac{1}{\omega C}=\frac{1}{\left(5.0 \times 10^{6} \mathrm{rad} / \mathrm{s}\right)\left(100 \times10^{-12}\mathrm{~F}\right)}=2000 \Omega\end{aligned}

Since X_L = X_C at resonance as stated above, Z = R = 500 Ω.
(c) From Eq. (31.26) (V_{\mathrm{rms}}=I_{\mathrm{rms}} Z) the rms current at resonance is

I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}=\frac{V_{\mathrm{rms}}}{R}=\frac{1.0 \mathrm{~V}}{500 \Omega}=0.0020 \mathrm{~A}=2.0 \mathrm{~mA}

(d) The rms potential difference across the resistor is

V_{R-\mathrm{rms}}=I_{\mathrm{rms}} R=(0.0020 \mathrm{~A})(500 \Omega)=1.0 \mathrm{~V}

The rms potential differences across the inductor and capacitor are

\begin{aligned}V_{L-\mathrm{rms}} &=I_{\mathrm{rms}} X_{L}=(0.0020 \mathrm{~A})(2000\Omega)=4.0 \mathrm{~V} \\V_{C-\mathrm{rms}} &=I_{\mathrm{rms}} X_{C}=(0.0020\mathrm{~A})(2000 \Omega)=4.0 \mathrm{~V}\end{aligned}

 

EVALUATE: The potential differences across the inductor and the capacitor have equal rms values and amplitudes, but are 180° out of phase and so add to zero at each instant. Note also that at resonance, V_{R-rms} is equal to the source voltage V_{rms}, while in this example, V_{L-rms} and V_{C-rms} are both considerably larger than V_{rms}.

Related Answered Questions