Question 3.39: Two infinite parallel grounded conducting planes are held a ...

Two infinite parallel grounded conducting planes are held a distance a apart. A point charge q is placed in the region between them, a distance x from one plate. Find the force on q .^{20} Check that your answer is correct for the special cases a → ∞ and x = a/2.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The image configuration is shown in the figure; the positive image charge forces cancel in pairs. The net force of the negative image charges is:

F=\frac{1}{4 \pi \epsilon_{0}} q^{2}\left\{\frac{1}{[2(a-x)]^{2}}+\frac{1}{[2 a+2(a-x)]^{2}}+\frac{1}{[4 a+2(a-x)]^{2}}+\ldots\right.

 

\left.-\frac{1}{(2 x)^{2}}-\frac{1}{(2 a+2 x)^{2}}-\frac{1}{(4 a+2 x)^{2}}-\ldots\right\}

 

=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{4}\left\{\left[\frac{1}{(a-x)^{2}}+\frac{1}{(2 a-x)^{2}}+\frac{1}{(3 a-x)^{2}}+\ldots\right]-\left[\frac{1}{x^{2}}+\frac{1}{(a+x)^{2}}+\frac{1}{(2 a+x)^{2}}+\ldots\right]\right\}.

When a \rightarrow \infty \text { (i.e. } a \gg x) \text { only the } \frac{1}{x^{2}} \text { term survives: } F=-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(2 x)^{2}} (same as for only one plane— Eq. 3.12). When x = a/2,

F =-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{(2 d)^{2}} \hat{ z }                                (3.12)

F=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{4}\left\{\left[\frac{1}{(a / 2)^{2}}+\frac{1}{(3 a / 2)^{2}}+\frac{1}{(5 a / 2)^{2}}+\ldots\right]-\left[\frac{1}{(a / 2)^{2}}+\frac{1}{(3 a / 2)^{2}}+\frac{1}{(5 a / 2)^{2}}+\ldots\right]\right\}=0.

3.39

Related Answered Questions