Question 11.16: Two long blocks, made up of different homogeneous materials,...

Two long blocks, made up of different homogeneous materials, are at temperatures T_1 and T_2 when they are brought into contact with one another. The interface quickly reaches a temperature T_0 given by,

T_0 = \frac{E_1 T_1 + E_2 T_2}{E_1 + E_2}

where E_1=\sqrt{\kappa _1 c_1}>0 and E_2=\sqrt{\kappa _2 c_2}>0 are called the effusivities of materials 1 and 2, where κ_1 and κ_2 are the thermal conductivities and c_1 and c_2 the specific heat per unit volume of both materials. If material 1 is very hot, but it has a low thermal conductivity κ_1 and specific heat c_1 , and to the contrary material 2 has large thermal conductivity κ_2 and specific heat c_2 , then the temperature of the interface T_0 is almost T_2 , i.e. material 2 does not ‘feel the heat’ of material 1. Establish this result by using the following instructions :
a) Consider an x-axis normal to the interface with x = 0 at the interface, x < 0 in material 1 and x > 0 in material 2. Let T_1 (x, t) and T_2 (x, t) be the solutions of the heat diffusion equation (11.35) in materials 1 and 2. Determine the boundary conditions on T_1 (x, t) and T_2 (x, t) at the interface.

∂_t T = λ ∇^2 T          (11.35)

b) Using an approach that is analogous to the one presented in § 11.4.3, show that the general solutions for the temperature profiles T_1 (x, t) and T_2 (x, t) are given by,

T_1 (x, t) = C_1 + D_1 erf \Bigl(\frac{x}{2\sqrt{\lambda _1t} }\Bigr)     where        x ≤ 0

T_2 (x, t) = C_2 + D_2 erf \Bigl(\frac{x}{2\sqrt{\lambda _2t} }\Bigr)       where     x ≥ 0

where erf (ν) is the error function defined as,

 erf (ν) =\frac{2}{√\pi } \int_{0}^{\nu }{\exp (-s^2)} ds

and C_1, C_2, D_1 and D_2 are constant coefficients.

c) Use the boundary conditions to determine the coefficients in terms of the temperatures T_0, T_1 and T_2 . Show that the temperature T_0 is given by the effusivity relation just after the two blocks have reached a common temperature at the interface.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a) At the interface, one boundary condition is that the temperatures of both materials are equal,

T_1 (0, t) = T_2 (0, t)

The other boundary condition is that the heat current densities j_{Q1} = −κ_1 ∂_x T_1 \hat{x} and j_{Q2} = −κ_2 ∂_x T_2 \hat{x} are equal as well,

κ_1 \frac{∂T_1 (0, t)}{∂x} = κ_2 \frac{∂T_2 (0, t)}{∂x}

where \hat{x} is the unit vector along the x-axis.

b) The heat diffusion equation in block 1 reads,

\frac{∂T_1 (x, t)}{∂t} = λ_1 \frac{∂^2T_1 (x, t)}{∂x^2}

The partial derivatives of the function T_1 (x, t) have to be recast in terms of the partial derivatives of the function f_1 (η_1) where η_1 (x, t) = x_2/λ_1t . The partial derivatives of the function η_1 (x, t) = x_2/λ_1t are,

\frac{∂η_1}{∂t} = – \frac{x^2}{λ_1t^2} = – \frac{η_1}{t}         and    \frac{∂η_1}{∂x} =  \frac{2x}{λ_1t} = \frac{2η_1}{x}

Since f_1 (η_1) = T_1 (x, t) , the first-order partial derivatives of the function T_1 (x, t) are recast in terms of the first-order derivative of the function f_1 (η_1) as,

\frac{\partial T_1}{\partial t} = \frac{df_1}{d\eta _1}\frac{\partial \eta _1}{\partial t} = -\frac{x^2}{\lambda _1t^2} \frac{df_1}{d\eta _1} = – \frac{\eta _1}{t} \frac{df_1}{d\eta _1}

 

\frac{\partial T_1}{\partial x} = \frac{df_1}{d\eta _1}\frac{\partial \eta _1}{\partial x} = \frac{2x}{\lambda _1t} \frac{df_1}{d\eta _1} = \frac{2\eta _1}{x} \frac{df_1}{d\eta _1}

The second-order partial derivative of the function   T_1 (x, t) is recast in terms of the second-order derivative of the function   f_1 (η_1) as,

\frac{\partial^2 T_1}{\partial x^2} = \frac{\partial}{\partial x}\biggl(\frac{2x}{\lambda _1t}\frac{df_1}{d\eta _1} \biggr) = \frac{2}{\lambda _1t} \frac{df_1}{d\eta _1} + \frac{2x}{\lambda _1t} \frac{d^2f_1}{d\eta ^2_1} \frac{\partial \eta _1}{\partial x} = \frac{2\eta _1}{x^2} \frac{df_1}{d\eta _1} +\frac{4\eta ^2_1}{x^2} \frac{d^2f_1}{d\eta ^2_1}

Thus, the heat diffusion equation becomes,

-\frac{\eta _1}{t} \frac{df_1}{d\eta _1} = \frac{2\lambda _1\eta _1}{x^2} \frac{df_1}{d\eta _1} + \frac{4\lambda _1\eta ^2_1}{x^2} \frac{d^f_1}{d\eta ^2_1}

Using the definition of the dimensionless function η_1, this differential equation is recast as,

4\eta _1\frac{d^2f_1}{d\eta ^2_1} + (\eta _1+2)\frac{df_1}{d\eta _1} =0

Here, we introduce a function g_1 (η_1) as the derivative of f_1 (η_1) with respect to η_1,

g_1 (η_1) = \frac{df_1}{dη_1}

Thus, the differential equation becomes,

4 η_1 \frac{dg_1 (η_1)}{dη_1}+ (η_1 + 2) g_1 (η_1) = 0

which is recast as,

\frac{dg_1(\eta _1)}{g_1(\eta _1)} = – \Bigl(\frac{1}{4}+\frac{1}{2\eta _1} \Bigr)d\eta _1

When integrating from η_0 to η_1 we find,

\int_{g_0}^{g_1(\eta _1)}{\frac{d\acute{g}_1(\acute{\eta }_1 ) }{\acute{g}_1(\acute{\eta }_1 ) } } =- \int_{\eta _0}^{\eta _1}{\Bigl(\frac{1}{4}+ \frac{1}{2\acute{\eta }_1 } \Bigr) }d\acute{\eta } _1

where g_0 = g_1 (η_0) . The solution is,

\ln \Bigl(\frac{g_1(\eta _1)}{g_0}\Bigr) =-\frac{1}{2} \ln \bigl(\frac{\eta _1}{\eta _2}\bigr) -\frac{1}{4} (\eta _1-\eta _0)

which is recast as,

\ln \Biggl(\frac{g_1(\eta _1)\eta ^{1/2}_1}{g_0 \eta ^{1/2}_0}\Biggr) = -\frac{1}{4}(\eta _1-\eta _0)

and implies that,

g_1 (η_1) = \frac{A_1}{η^{1/2}}\exp \bigl(-\frac{\eta _1}{4}\bigr)

where the constant A_1 = g_0 η^{1/2}_0 \exp (η_0/4) . When integrating from η_0 to η_1 we find,

f_1(\eta _1)= \int_{\eta _0}^{\eta _1}{\acute{g}_1(\acute{\eta }_1 )d\acute{\eta }_1 } = A_1\int_{\eta _0}^{\eta _1}{\frac{1}{\acute{\eta }^{1/2}_1 } } \exp\Bigl(-\frac{\acute{\eta }_1 }{4}\Bigr)d\acute{\eta }_1

Using the change of variable,

\nu _1 = \frac{\eta ^{1/2}_1}{2} = \frac{x}{2\sqrt{\lambda _1t} }       then        d\nu _1=\frac{d\eta _1}{4\eta ^{1/2}_1}

and taking into account the definition h_1 (ν_1) = f_1 (η_1) , we can recast the solution as,

h_1 (ν_1) = B_1 \int_{\nu _0}^{\nu _1}{\exp (-\acute{\nu }^2_1 )} d\acute{\nu _1}

where the constant B_1 = 4 A_1 , which can be rewritten as,

h_1 (ν_1) =C_1 +B_1 \int_{\nu _0}^{\nu _1}{\exp (-\acute{\nu }^2_1 )} d\acute{\nu _1}

where the constant C_1 is given by,

C_1 = -\int_{\nu _0}^{\nu _1}{\exp (-\acute{\nu }^2_1 )} d\acute{\nu _1}

The error function erf (ν), defined as,

 erf (ν) = \frac{2}{\sqrt{\pi } } \int_{0}^{\nu }{\exp (-s^2)} ds

is an odd function, i.e. erf (−ν) = −erf (ν) such that erf (0) = 0 and erf (∞) = 1. The derivative of the error function erf (ν) is given by,

 \frac{d erf (ν)}{dν} =\frac{2}{\sqrt{\pi } } \exp(−ν^2)

Thus, using the error function we find,

 h_1 (ν_1) = C_1 + D_1 erf (ν_1)

where  D_1 = (\sqrt{\pi }/2) B_1 . Since  h_1 (ν_1) = T_1 (x, t) and  ν_1 = x/2\sqrt{λ_1t } , we have,

T_1 (x, t) = C_1 + D_1 erf\Bigl(\frac{x}{2\sqrt{\lambda _1t} }\Bigr)          where x ≤ 0

Likewise, we obtain the temperature profile in block 2,

T_2 (x, t) = C_2 + D_2 erf\Bigl(\frac{x}{2\sqrt{\lambda _2t} }\Bigr)          where x ≥ 0

c) At the interface, i.e. x = 0, the first boundary condition, T_1 (0, t) = T_2 (0, t) = T_0 , is satisfied provided that,

C_1 = C_2 = T_0

The blocks are long enough so that the temperatures at the end of each block is, at all time, equal to its initial temperatures. This is written as,

T_1 = T_1 (−∞, t) = T_0 + D_1 erf (−∞) = T_0 − D_1

 

T_2 = T_2 (∞, t) = T_0 + D_2 erf (∞) = T_0 + D_2

Hence, the temperature profiles can be recast as,

T_1 (x, t) = T_0 + (T_0 − T_1) erf \Bigl(\frac{x}{2\sqrt{\lambda _1t} }\Bigr)         and           x ≤ 0

T_2 (x, t) = T_0 + (T_2 − T_0) erf \Bigl(\frac{x}{2\sqrt{\lambda _2t} }\Bigr)           and       x ≥ 0

The spatial derivative of the temperature profiles are given by,

\frac{∂T_1 (0, t)}{∂x} = (T_0-T_1)\frac{d}{d\nu } \bigl(erf(\nu )\bigr)\mid _{\nu =0}\frac{\partial}{\partial x} \Bigl(\frac{x}{2\sqrt{\lambda _1t} }\Bigr) \mid _{x=0} = \frac{T_0-T_1}{\sqrt{\pi \lambda _1t} }

 

\frac{∂T_2 (0, t)}{∂x} = (T_2-T_0)\frac{d}{d\nu } \bigl(erf(\nu )\bigr)\mid _{\nu =0}\frac{\partial}{\partial x} \Bigl(\frac{x}{2\sqrt{\lambda _2t} }\Bigr) \mid _{x=0} = \frac{T_2-T_0}{\sqrt{\pi \lambda _2t} }

The second boundary condition, i.e. κ_1 ∂_x T_1 (0, t) = κ_2 ∂_x T_2 (0, t) , is recast as,

\kappa _1\frac{T_0-T_1}{\sqrt{\pi \lambda _1t} } = \kappa _2\frac{t_2-T_0}{\sqrt{\pi \lambda _2t} }

It has to hold for all times t after the interface has reached temperature T_0 . According to relation (11.36),

λ ≡ \frac{κ}{c_e}                                     (11.36)

λ_1= \frac{κ_1}{c_1}          and            λ_2= \frac{κ_2}{c_2}

Thus,

\frac{T_1-T_0}{T_0-T_2} =\frac{\kappa _2}{\kappa _1} \sqrt{\frac{\lambda _1}{\lambda _2} } = \frac{\kappa _2}{\kappa _1}\sqrt{\frac{\kappa _1c_2}{\kappa _2c_1} } = \sqrt{\frac{\kappa _2c_2}{\kappa _1c_1} } = \frac{E_2}{E_1}

which implies that,

T_0 = \frac{E_1 T_1 + E_2 T_2}{E_1 + E_2}

Related Answered Questions