Question 11.178E: Two moist air streams with 85% relative humidity, both flowi...

Two moist air streams with 85% relative humidity, both flowing at a rate of 0.2 lbm/s of dry air are mixed in a steady flow setup. One inlet flowstream is at 90 F and the other at 61 F. Find the exit relative humidity.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

CV mixing chamber.

Continuity Eq. water:              \dot{ m }_{\text {air }} w _{1}+\dot{ m }_{\text {air }} w _{2}=2 \dot{ m }_{\text {air }} w _{ ex };

Energy Eq.:                              \dot{ m }_{\text {air }} \tilde{ h }_{1}+\dot{ m }_{\text {air }} \tilde{ h }_{2}=2 \dot{ m }_{\text {air }} \tilde{ h }_{ ex }

Properties from the tables and formulas

\begin{aligned}& P _{ g 90}=0.699 ; P _{ v 1}=0.85 \times 0.699=0.594   psia \\& w _{1}=0.622 \times 0.594 /(14.7-0.594)=0.0262 \\& P _{ g 61}=0.2667 ; P _{ v 2}=0.85 \times 0.2667=0.2267   psia \\& w _{2}=0.622 \times 0.2267 /(14.7-0.2267)=0.00974\end{aligned}

Continuity Eq. water:      w _{ ex }=\left( w _{1}+ w _{2}\right) / 2=0.018;

For the energy equation we have      \tilde{ h }= h _{ a }+ wh _{ v }           so:

2 \tilde{ h }_{ ex }-\tilde{ h }_{1}-\tilde{ h }_{2}=0=2 h _{ a  ex }- h _{ a  1}- h _{ a  2}+2 w _{ ex } h _{ v  ex }- w _{1} h _{ v 1}- wh _{ v  2}

we will use constant heat capacity to avoid an iteration on T _{ ex }.

\begin{aligned}& C _{ p  \text { air }}\left(2 T _{ ex }- T _{1}- T _{2}\right)+ C _{ p  H 2 O }\left(2 w _{ ex } T _{ ex }- w _{1} T _{1}- w _{2} T _{2}\right)=0 \\& T _{ ex }=\left[ C _{ p \text { air }}\left( T _{1}+ T _{2}\right)+ C _{ p  H 2 O }\left( w _{1} T _{1}+ w _{2} T _{2}\right)\right] /\left[2 C _{ p  \text { air }}+2 w _{ ex } C _{ p  H 2 O }\right] \\&\quad=[0.24(90+61)+0.447(0.0262 \times 90+0.00974 \times 61] / 0.4961 \\&\quad=75.7   F\end{aligned}

 

\begin{aligned}& P _{ v  ex }=\frac{ w _{ ex }}{0.622+ w _{ ex }} P _{ tot }=\frac{0.018}{0.622+0.018} 14.7=0.413   psia \\& P _{ g  ex }=0.445   psia \Rightarrow \quad \phi=0.413 / 0.445= 0 . 9 3 \text {   or   } 9 3 \%\end{aligned}

 

 

 

Related Answered Questions