Two moist air streams with 85% relative humidity, both flowing at a rate of 0.2 lbm/s of dry air are mixed in a steady flow setup. One inlet flowstream is at 90 F and the other at 61 F. Find the exit relative humidity.
Two moist air streams with 85% relative humidity, both flowing at a rate of 0.2 lbm/s of dry air are mixed in a steady flow setup. One inlet flowstream is at 90 F and the other at 61 F. Find the exit relative humidity.
CV mixing chamber.
Continuity Eq. water: \dot{ m }_{\text {air }} w _{1}+\dot{ m }_{\text {air }} w _{2}=2 \dot{ m }_{\text {air }} w _{ ex };
Energy Eq.: \dot{ m }_{\text {air }} \tilde{ h }_{1}+\dot{ m }_{\text {air }} \tilde{ h }_{2}=2 \dot{ m }_{\text {air }} \tilde{ h }_{ ex }
Properties from the tables and formulas
\begin{aligned}& P _{ g 90}=0.699 ; P _{ v 1}=0.85 \times 0.699=0.594 psia \\& w _{1}=0.622 \times 0.594 /(14.7-0.594)=0.0262 \\& P _{ g 61}=0.2667 ; P _{ v 2}=0.85 \times 0.2667=0.2267 psia \\& w _{2}=0.622 \times 0.2267 /(14.7-0.2267)=0.00974\end{aligned}Continuity Eq. water: w _{ ex }=\left( w _{1}+ w _{2}\right) / 2=0.018;
For the energy equation we have \tilde{ h }= h _{ a }+ wh _{ v } so:
2 \tilde{ h }_{ ex }-\tilde{ h }_{1}-\tilde{ h }_{2}=0=2 h _{ a ex }- h _{ a 1}- h _{ a 2}+2 w _{ ex } h _{ v ex }- w _{1} h _{ v 1}- wh _{ v 2}we will use constant heat capacity to avoid an iteration on T _{ ex }.
\begin{aligned}& C _{ p \text { air }}\left(2 T _{ ex }- T _{1}- T _{2}\right)+ C _{ p H 2 O }\left(2 w _{ ex } T _{ ex }- w _{1} T _{1}- w _{2} T _{2}\right)=0 \\& T _{ ex }=\left[ C _{ p \text { air }}\left( T _{1}+ T _{2}\right)+ C _{ p H 2 O }\left( w _{1} T _{1}+ w _{2} T _{2}\right)\right] /\left[2 C _{ p \text { air }}+2 w _{ ex } C _{ p H 2 O }\right] \\&\quad=[0.24(90+61)+0.447(0.0262 \times 90+0.00974 \times 61] / 0.4961 \\&\quad=75.7 F\end{aligned}\begin{aligned}& P _{ v ex }=\frac{ w _{ ex }}{0.622+ w _{ ex }} P _{ tot }=\frac{0.018}{0.622+0.018} 14.7=0.413 psia \\& P _{ g ex }=0.445 psia \Rightarrow \quad \phi=0.413 / 0.445= 0 . 9 3 \text { or } 9 3 \%\end{aligned}