Question 14.39: Two spiral gears in mesh have the following data: Angle of f...

Two spiral gears in mesh have the following data:
Angle of friction = 6°
Normal circular pitch = 20 mm
Shaft angle = 55°
Speed ratio = 3
Approximate centre distance = 400 mm
Spiral angle of pinion = 25°
Determine (a) the exact centre distance, (b) the number of teeth in each wheel, and (c) the efficiency
of the drive.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given: } \quad \phi=6^{\circ}, p_{n}=20 mm , \Sigma=55^{\circ}, i=3, C \cong 400 mm , \beta_{1}=25^{\circ} .

C=\left(\frac{z_{1} p_{n}}{2 \pi}\right)\left[\frac{1}{\cos \beta_{1}}+\frac{i}{\cos \beta_{2}}\right] .

400=\left(\frac{z_{1} \times 20}{2 \pi}\right)\left[\frac{1}{\cos 25^{\circ}}+\frac{3}{\cos 30^{\circ}}\right] .

z_{1}=27.51 \approx 28 .

z_{2}=84 .

Exact centre distance,    C=\left(\frac{z_{1} p_{n}}{2 \pi}\right)\left[\frac{1}{\cos \beta_{1}}+\frac{i}{\cos \beta_{2}}\right] .

=\left(\frac{28 \times 20}{2 \pi}\right)\left[\frac{1}{\cos 25^{\circ}}+\frac{3}{\cos 30^{\circ}}\right] .

=407.08 mm .

Efficiency of drive,    =\frac{\cos \left(\beta_{2}+\phi\right) \cos \beta_{1}}{\cos \left(\beta_{1}-\phi\right) \cos \beta_{2}} .

=\frac{\cos \left(30^{\circ}+6^{\circ}\right) \cos 25^{\circ}}{\cos \left(25^{\circ}-6^{\circ}\right) \cos 30^{\circ}} .

=81.54 \% .

Related Answered Questions