Question 9.5.2: Unitarily diagonalize A = [2 1 + i 1 - i 3].

Unitarily diagonalize A = \left [ \begin{matrix} 2 & 1 + i \\ 1 - i & 3 \end{matrix} \right ].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The characteristic polynomial of A is

C(\lambda ) = \left | \begin{matrix} 2 – \lambda & 1 + i \\ 1 – i & 3 – \lambda \end{matrix} \right | = \lambda ^2 − 5\lambda + 4 = (\lambda − 4)(\lambda − 1)

Hence, the eigenvalues of A are \lambda _1 = 4 and \lambda _2 = 1.

For \lambda _1 = 4,

A − \lambda _{1}I = \left [ \begin{matrix} -2 & 1 + i \\ 1 – i & -1 \end{matrix} \right ] \sim \left [ \begin{matrix} 1 & -(1 + i)/2 \\ 0 & 0 \end{matrix} \right ]

Thus, a corresponding eigenvector is {\bf{z}}_1 = \left [ \begin{matrix} 1 + i \\ 2 \end{matrix} \right ]. For \lambda _2 = 1,

A − \lambda _{2}I = \left [ \begin{matrix} 1 & 1 + i \\ 1 – i & 2 \end{matrix} \right ] \sim \left [ \begin{matrix} 1 & 1 + i \\ 0 & 0 \end{matrix} \right ]

Thus, a corresponding eigenvector is {\bf{z}}_2 = \left [ \begin{matrix} 1 + i \\ -1 \end{matrix} \right ].

To unitarily diagonalize A, we need an orthonormal basis for \mathbb{C} ^{2} of eigenvectors of A.

Hence, we normalize {\bf{z}}_1 and {\bf{z}}_2 and take

U = \left [ \begin{matrix} (1 + i) / \sqrt{6} & (1 + i) / \sqrt{3} \\ 2 / \sqrt{6} & -1 / \sqrt{3} \end{matrix} \right ]

to get

U^{∗}AU = diag(4, 1)

Related Answered Questions