Unitarily diagonalize A = \left [ \begin{matrix} 4i & 1 + 3i \\ -1 + 3i & i \end{matrix} \right ].
Unitarily diagonalize A = \left [ \begin{matrix} 4i & 1 + 3i \\ -1 + 3i & i \end{matrix} \right ].
We have C(\lambda ) = \lambda ^2 − 5i \lambda + 6. Using the quadratic formula, we get eigenvalues \lambda _1 = 6i and \lambda _2 = −i. We find that
A − 6iI = \left [ \begin{matrix} -2i & 1 + 3i \\ -1 + 3i & -5i \end{matrix} \right ] \Rightarrow {\bf{z}}_1 = \left [ \begin{matrix} 3 – i \\ 2 \end{matrix} \right ]
A + iI = \left [ \begin{matrix} 5i & 1 + 3i \\ -1 + 3i & 2i \end{matrix} \right ] \Rightarrow {\bf{z}}_2 = \left [ \begin{matrix} 1 + 3i \\ -5i \end{matrix} \right ]
Hence, taking
U = \left [ \begin{matrix} (3 – i) / \sqrt{14} & (1 + 3i) / \sqrt{35} \\ 2 / \sqrt{14} & −5i / \sqrt{35} \end{matrix} \right ]
gives
U^{∗}AU = \left [ \begin{matrix} 6i & 0 \\ 0 & -i \end{matrix} \right ]