Question 9.5.4: Unitarily diagonalize A = [4i 1 + 3i -1 + 3i i].

Unitarily diagonalize A = \left [ \begin{matrix} 4i & 1 + 3i \\ -1 + 3i & i \end{matrix} \right ].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have C(\lambda ) = \lambda ^2 − 5i \lambda + 6. Using the quadratic formula, we get eigenvalues \lambda _1 = 6i and \lambda _2 = −i. We find that

A − 6iI = \left [ \begin{matrix} -2i & 1 + 3i \\ -1 + 3i & -5i \end{matrix} \right ] \Rightarrow {\bf{z}}_1 = \left [ \begin{matrix} 3 – i \\ 2 \end{matrix} \right ]

A + iI = \left [ \begin{matrix} 5i & 1 + 3i \\ -1 + 3i & 2i \end{matrix} \right ] \Rightarrow {\bf{z}}_2 = \left [ \begin{matrix} 1 + 3i \\ -5i \end{matrix} \right ]

Hence, taking

U = \left [ \begin{matrix} (3 – i) / \sqrt{14} & (1 + 3i) / \sqrt{35} \\ 2 / \sqrt{14} & −5i / \sqrt{35} \end{matrix} \right ]

gives

U^{∗}AU = \left [ \begin{matrix} 6i & 0 \\ 0 & -i \end{matrix} \right ]

Related Answered Questions