Use de Moivre’s Formula to calculate (2 + 2i)^3.
Use de Moivre’s Formula to calculate (2 + 2i)^3.
(2 + 2i)^3 = \left[2 \sqrt{2} \left(\cos (\frac{\pi }{4} ) + \sin (\frac{\pi }{4} )\right) \right] ^3
= (2 \sqrt{2})^3 \left(\cos (\frac{3 \pi }{4} ) + i \sin (\frac{3 \pi }{4} )\right)
= 16 \sqrt{2} \left(- \frac{1}{\sqrt{2} } + i \frac{1}{\sqrt{2} } \right)
= -16 + 16 i