Question 2.28: Use Eq. 2.29 to calculate the potential inside a uniformly c...

Use Eq. 2.29 to calculate the potential inside a uniformly charged solid sphere of radius R and total charge q. Compare your answer to Prob. 2.21.

V( r )=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left( r ^{\prime}\right)}{η} d \tau^{\prime}                              (2.29)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Orient axes so P is on z axis.

V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho}{η } d \tau. \left\{\begin{array}{l}\text { Here } \rho \text { is constant, } d \tau=r^{2} \sin \theta d r d \theta d \phi ,\\η =\sqrt{z^{2}+r^{2}-2 r z \cos \theta}.\end{array}\right.

 

V=\frac{\rho}{4 \pi \epsilon_{0}} \int \frac{r^{2} \sin \theta d r d \theta d \phi}{\sqrt{z^{2}+r^{2}-2 r z \cos \theta}} ; \int_{0}^{2 \pi} d \phi=2 \pi.

 

\int_{0}^{\pi} \frac{\sin \theta}{\sqrt{z^{2}+r^{2}-2 r z \cos \theta}} d \theta=\left.\frac{1}{r z}\left(\sqrt{r^{2}+z^{2}-2 r z \cos \theta}\right)\right|_{0} ^{\pi}=\frac{1}{r z}\left(\sqrt{r^{2}+z^{2}+2 r z}-\sqrt{r^{2}+z^{2}-2 r z}\right)

 

=\frac{1}{r z}(r+z-|r-z|)=\left\{\begin{array}{l}2 / z, \text { if } r<z ,\\2 / r, \text { if } r>z.\end{array}\right\}

 

\therefore V=\frac{\rho}{4 \pi \epsilon_{0}} \cdot 2 \pi \cdot 2\left\{\int_{0}^{z} \frac{1}{z} r^{2} d r+\int_{z}^{R} \frac{1}{r} r^{2} d r\right\}=\frac{\rho}{\epsilon_{0}}\left\{\frac{1}{z} \frac{z^{3}}{3}+\frac{R^{2}-z^{2}}{2}\right\}=\frac{\rho}{2 \epsilon_{0}}\left(R^{2}-\frac{z^{2}}{3}\right).

 

But \rho=\frac{q}{\frac{4}{3} \pi R^{3}}, \text { so } V(z)=\frac{1}{2 \epsilon_{0}} \frac{3 q}{4 \pi R^{3}}\left(R^{2}-\frac{z^{2}}{3}\right)=\frac{q}{8 \pi \epsilon_{0} R}\left(3-\frac{z^{2}}{R^{2}}\right) ; V(r)=\frac{q}{8 \pi \epsilon_{0} R}\left(3-\frac{r^{2}}{R^{2}}\right).

2.28

Related Answered Questions