Use Gauss’s law to find the electric field inside a uniformly charged solid sphere (charge density ρ). Compare your answer to Prob. 2.8.
Use Gauss’s law to find the electric field inside a uniformly charged solid sphere (charge density ρ). Compare your answer to Prob. 2.8.
\oint{}E\cdot da = E · 4\pi r^2=\frac{1}{\varepsilon _0} Q_{enc}=\frac{1}{\varepsilon _0}\frac{4}{3} \pi r^3\rho . So
E=\frac{1}{3\varepsilon_0 } \rho r\hat{r} .
Since Q_{tot} =\frac{4}{3}\pi R^3\rho ,E=\frac{1}{4\pi \varepsilon _0}\frac{Q}{R^3}\hat{r} (as in Prob. 2.8).