Question 3.51: Use Green’s reciprocity theorem (Prob. 3.50) to solve the fo...

Use Green’s reciprocity theorem (Prob. 3.50) to solve the following two problems. [Hint: for distribution 1, use the actual situation; for distribution 2, remove q, and set one of the conductors at potential V_{0}.]

(a)  Both plates of a parallel-plate capacitor are grounded, and a point charge q is placed between them at a distance x from plate 1. The plate separation is d. Find the induced charge on each plate. \text { [Answer: } \left.Q_{1}=q(x / d-1) ; Q_{2}=-q x / d\right]

(b)  Two concentric spherical conducting shells (radii a and b) are grounded, and a point charge q is placed between them (at radius r). Find the induced charge on each sphere.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Situation (1): actual. Situation (2): right plate at V_{0}, left plate at V = 0, no charge at x.

  \int V_{1} \rho_{2} d \tau=V_{l_{1}} Q_{l_{2}}+V_{x_{1}} Q_{x_{2}}+V_{r_{1}} Q_{r_{2}} .

But  V_{l_{1}}=V_{r_{1}}=0 \text { and } Q_{x_{2}}=0, \text { so } \int V_{1} \rho_{2} d \tau=0 .

\int V_{2} \rho_{1} d \tau=V_{l_{2}} Q_{l_{1}}+V_{x_{2}} Q_{x_{1}}+V_{r_{2}} Q_{r_{1}} .

But  V_{l_{2}}=0 Q_{x_{1}}=q, V_{r_{2}}=V_{0}, Q_{r_{1}}=Q_{2}, \text { and } V_{x_{2}}=V_{0}(x / d) . \text { So } 0=V_{0}(x / d) q+V_{0} Q_{2} , and hence

Q_{2}=-q x / d .

Situation (1): actual. Situation (2): left plate at V_{0}, right plate at V = 0, no charge at x.

\int V_{1} \rho_{2} d \tau=0=\int V_{2} \rho_{1} d \tau=V_{l_{2}} Q_{l_{1}}+V_{x_{2}} Q_{x_{1}}+V_{r_{2}} Q_{r_{1}}=V_{0} Q_{1}+q V_{x_{2}}+0 .

But  V_{x_{2}}=V_{0}\left(1-\frac{x}{d}\right) , so

Q_{1}=-q(1-x / d) .

(b) Situation (1): actual. Situation (2): inner sphere at V_{0}, outer sphere at zero, no charge at r.

\int V_{1} \rho_{2} d \tau=V_{a_{1}} Q_{a_{2}}+V_{r_{1}} Q_{r_{2}}+V_{b_{1}} Q_{b_{2}} .

But  V_{a_{1}}=V_{b_{1}}=0, Q_{r_{2}}=0 . \text { So } \int V_{1} \rho_{2} d \tau=0 .

\int V_{2} \rho_{1} d \tau=V_{a_{2}} Q_{a_{1}}+V_{r_{2}} Q_{r_{1}}+V_{b_{2}} Q_{b_{1}}=Q_{a} V_{0}+q V_{r_{2}}+0 .

But V_{r_{2}} is the potential at r in configuration 2: V(r)=A+B / r, \text { with } V(a)=V_{0} \Rightarrow A+B / a=V_{0} , or a A+B=a V_{0} \text {, and } V(b)=0 \Rightarrow A+B / b=0, \text { or } b A+B=0 . \text { Subtract: }(b-a) A=-a V_{0} \Rightarrow A=-a V_{0} /(b-a) ; B\left(\frac{1}{a}-\frac{1}{b}\right)=V_{0}=B \frac{(b-a)}{a b} \Rightarrow B=a b V_{0} /(b-a) . \text { So } V(r)=\frac{a V_{0}}{(b-a)}\left(\frac{b}{r}-1\right) . Therefore 

Q_{a} V_{0}+q \frac{a V_{0}}{(b-a)}\left(\frac{b}{r}-1\right)=0 ; \quad Q_{a}=-\frac{q a}{(b-a)}\left(\frac{b}{r}-1\right) .

Now let Situation (2) be: inner sphere at zero, outer at V_{0}, no charge at r.

\int V_{1} \rho_{2} d \tau=0=\int V_{2} \rho_{1} d \tau=V_{a_{2}} Q_{a_{1}}+V_{r_{2}} Q_{r_{1}}+V_{b_{2}} Q_{b_{1}}=0+q V_{r_{2}}+Q_{b} V_{0} .

This time V(r)=A+\frac{B}{r} \text { with } V(a)=0 \Rightarrow A+B / a=0 ; V(b)=V_{0} \Rightarrow A+B / b=V_{0} , so

V(r)=\frac{b V_{0}}{(b-a)}\left(1-\frac{a}{r}\right) . \text { Therefore } q \frac{b V_{0}}{(b-a)}\left(1-\frac{a}{r}\right)+Q_{b} V_{0}=0 ; \quad Q_{b}=-\frac{q b}{(b-a)}\left(1-\frac{a}{r}\right) .

3.51

Related Answered Questions