Question 3.17: Use Laplace transforms to find the solution to the following...

Use Laplace transforms to find the solution to the following set of equations

 

dy1dt+y2=x\frac{d y_{1}}{d t}+y_{2}=x

 

dy2dt+3y2=2y1\frac{d y_{2}}{d t}+3 y_{2}=2 y_{1}

 

for x=etx=e^{-t} and zero initial conditions.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Laplace transform of the system of ODEs gives:

 

L(dy1dt)+L(y2)=L(et)L \left(\frac{d y_{1}}{d t}\right)+ L \left(y_{2}\right)= L \left(e^{-t}\right)

 

L(dy2dt)+3L(y2)=2L(y1)L \left(\frac{d y_{2}}{d t}\right)+3 L \left(y_{2}\right)=2 L \left(y_{1}\right)

 

sY1+Y2=1s+1s Y_{1}+Y_{2}=\frac{1}{s+1}  (1)

 

sY2+3Y2=2Y1s Y_{2}+3 Y_{2}=2 Y_{1}  (2)

 

Next solve Equation 2 for Y2Y_{2} in terms of Y1Y_{1}

 

Y2(s+3)=2Y1Y_{2}(s+3)=2 Y_{1}

 

Y2=2Y1s+3Y_{2}=\frac{2 Y_{1}}{s+3}  (3)

 

Substitute equation 3 into equation 1 and solve for Y1Y_{1}

 

sY1+2Y1s+3=1s+1s Y_{1}+\frac{2 Y_{1}}{s+3}=\frac{1}{s+1}

 

Y1(s+2s+3)=1s+1Y_{1}\left(s+\frac{2}{s+3}\right)=\frac{1}{s+1}

 

Y1=1(s+1)(s+2s+3)Y_{1}=\frac{1}{(s+1)\left(s+\frac{2}{s+3}\right)}

 

Expand using partial fractions:

 

Y1=s+3(s+1)2(s+2)=1s+21s+1+2(s+1)2Y_{1}=\frac{s+3}{(s+1)^{2}(s+2)}=\frac{1}{s+2}-\frac{1}{s+1}+\frac{2}{(s+1)^{2}}

 

Now go back and substitute into equation 3 to get Y2Y_{2} and expand using partial fractions:

 

Y2=2Y1s+3=2(s+1)2(s+2)=2s+22s+1+2(s+1)2Y_{2}=\frac{2 Y_{1}}{s+3}=\frac{2}{(s+1)^{2}(s+2)}=\frac{2}{s+2}-\frac{2}{s+1}+\frac{2}{(s+1)^{2}}

 

Finally, get both time-domain solutions using the inverse Laplace transform:

 

y1(t)=e2tet+2tety_{1}(t)=e^{-2 t}-e^{-t}+2 t e^{-t}

 

y2(t)=2(e2tet+tet)y_{2}(t)=2\left(e^{-2 t}-e^{-t}+t e^{-t}\right)

Related Answered Questions