Question 7.P.2: Use the Pauli matrices σx = (0 1 1 0), σy = (0 -i i 0), and ...

Use the Pauli matrices \sigma _{x} =\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right) , \sigma _{y} =\left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right), and \sigma _{z} =\left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right), to show that

(a) e^{-i\alpha \sigma _{x}} =I\cos \alpha -i\sigma _{x}\sin \alpha , where I is the unit matrix,

(b) e^{i\alpha \sigma _{x}}\sigma _{z}e^{-i\alpha \sigma _{x}} =\sigma _{z}\cos (2\alpha )+\sigma _{y} \sin (2\alpha ).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using the expansion

e^{-i\alpha \sigma _{x}}=\sum\limits_{n=0}^{\infty } \frac{(-i)^{2n} }{(2n)!} (\alpha )^{2n} \sigma ^{2n}_{x} + \sum \limits_{n=0}^{\infty } \frac{(-i)^{2n+1} }{(2n+1)!} (\alpha )^{2n+1} \sigma ^{2n+1}_{x} ,              (7.346)

and since \sigma ^{2}_{x} =1, \sigma ^{2n}_{x}=I , and \sigma ^{2n+1}_{x} =\sigma _{x} , where I is the unit matrix, we have

e^{-i\alpha \sigma _{x}}=\left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) \sum\limits_{n=0}^{\infty } \frac{(-1)^{n} }{(2n)!} (\alpha )^{2n} -i\sigma _{x} \sum\limits_{n=0}^{\infty } \frac{(-1)^{n} }{(2n+1)!} (\alpha )^{2n+1}

 

=I\cos \alpha -i\sigma _{x}\sin \alpha .                   (7.347)

(b) From (7.347) we can write

e^{i\alpha \sigma _{x}} \sigma _{z} e^{-i\alpha \sigma _{x}} =(\cos \alpha +i\sigma _{x} \sin \alpha )\sigma _{z} (\cos \alpha -i\sigma _{x} \sin \alpha )

 

=\sigma _{z} \cos ^{2} \alpha +\sigma _{x} \sigma _{z} \sigma _{x} \sin ^{2} \alpha +i[\sigma _{x}, \sigma _{z}] \sin \alpha \cos \alpha ,        (7.348)

which, when using the facts that \sigma _{x} \sigma _{z}=-\sigma _{z} \sigma _{x},\sigma ^{2}_{x} =I, and [\sigma _{x}, \sigma _{z}]=-2i\sigma _{y}, reduces to

e^{i\alpha \sigma _{x}} \sigma _{z} e^{-i\alpha \sigma _{x}} =\sigma _{z}\cos ^{2} \alpha -\sigma _{z}\sigma ^{2}_{x}\sin ^{2} \alpha +2\sigma _{y}\sin \alpha \cos \alpha

 

=\sigma _{z}(\cos ^{2} \alpha -\sin ^{2} \alpha )+\sigma _{y}\sin (2\alpha )

 

=\sigma _{z}\cos (2\alpha )+\sigma _{y}\sin (2\alpha ) .                              (7.349)

Related Answered Questions

To find the matrix of d^{(1)} (\beta )=e^{-...