Question 7.80: uses Pr function Calculate the air temperature and pressure ...

uses P _{ r } function
Calculate the air temperature and pressure at the stagnation point right in front of a meteorite entering the atmosphere (-50 °C, 50 kPa) with a velocity of 2000 m/s. Do this assuming air is incompressible at the given state and repeat for air being a compressible substance going through an adiabatic compression.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Kinetic energy:            \frac{1}{2} V ^{2}=\frac{1}{2}(2000)^{2} / 1000=2000   kJ / kg

Ideal gas:                      v _{ atm }= RT / P =0.287 \times 223 / 50=1.28   m ^{3} / kg

a) incompressible

Energy Eq.4.13:        \Delta h =\frac{1}{2} V ^{2}=2000   kJ / kg

If A.5    \Delta T =\Delta h / C _{ p }=1992 K  unreasonable, too high for that  C _{ p }

Use A.7:

\begin{array}{l}h _{ st }= h _{o}+\frac{1}{2} V ^{2}=223.22+2000=2223.3   kJ / kg \\T _{ st }=1977    K\end{array}

Bernoulli (incompressible) Eq.7.17:

\begin{array}{l}\Delta P = P _{ st }- P _{ o }=\frac{1}{2} V ^{2} / v =2000 / 1.28=1562.5   kPa \\P _{ st }=1562.5+50=1612.5   kPa\end{array}

 

b) compressible

T _{ st }=1977   K    the same energy equation.

From A.7.2:      Stagnation point  P _{ r  st }=1580.3 ;         Free  P _{ r  o  }=0.39809

\begin{aligned}P _{ st } &= P _{ o } \times \frac{ P _{ r  st }}{ P _{ r  o }}=50 \times \frac{1580.3}{0.39809} \\&=198485   kPa\end{aligned}

Notice that this is highly compressible, v is not constant.

 

……………………………………

Eq.4.13 : q+h_{i}+\frac{ V _{i}^{2}}{2}+g Z_{i}=h_{e}+\frac{ V _{e}^{2}}{2}+g Z_{e}+w

Eq.7.17 : v P_{i}+\frac{1}{2} V _{i}^{2}+g Z_{i}=v P_{e}+\frac{1}{2} V _{e}^{2}+g Z_{e}

 

1
A.5.1
A.5.2
A.7.1'
A.7.1''
A.7.2

Related Answered Questions