Holooly Plus Logo

Question 5.61: Using Eq. 5.88, calculate the average magnetic field of a di...

Using Eq. 5.88, calculate the average magnetic field of a dipole over a sphere of radius R centered at the origin. Do the angular integrals first. Compare your answer with the general theorem in Prob. 5.59. Explain the discrepancy, and indicate how Eq. 5.89 can be corrected to resolve the ambiguity at r = 0. (If you get stuck, refer to Prob. 3.48.)

B _{\text {dip }}( r )=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{3}}[3( m \cdot \hat{ r }) \hat{ r }- m ]                                 (5.89)

Evidently the true field of a magnetic dipole is ^{29}

 

B _{ dip }( r )=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{3}}[3( m \cdot \hat{ r }) \hat{ r }- m ]+\frac{2 \mu_{0}}{3} m \delta^{3}( r )                           (5.94)

Compare the electrostatic analog, Eq. 3.106.

E _{\text {dip }}( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ]-\frac{1}{3 \epsilon_{0}} p \delta^{3}( r )                  (3.106)

The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Related Answered Questions