Question 7.2.1: Using the Steam Tables to Show That the Stability Conditions...

Using the Steam Tables to Show That the Stability Conditions Are Satisfied for Steam
Show that Eqs. 7.2-12 and 7.2-13 are satisfied by superheated steam.

 

C_{\mathrm{V}}>0                                     (7.2.12)

 

\left(\frac{\partial P}{\partial \underline{V}}\right)_{T}<0 \quad \text { or } \quad \kappa_{T}>0                             (7.2.13)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It is easiest to use Eq. 7.2-13 in the form (\partial P / \partial \underline{V})_{T}<0, which requires that the volume decrease as the pressure increases at constant temperature. This is seen to be true by using the superheated steam table and observing that \hat{V} decreases as P increases at fixed temperature. For example, at 1000°C

 

P (MPa) 0.50 0.8 1 1.4 1.8 2.5
\hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right) 1.1747 0.7340 0.5871 0.4192 0.3260 0.2346

 

Proving that C_{\mathrm{V}}>0 or \hat{C}_{\mathrm{V}}>0 is a bit more difficult since

 

\hat{C}_{V}=\left(\frac{\partial \hat{U}}{\partial T}\right)_{V}

 

and the internal energy is not given at constant volume. Therefore, interpolation methods must be used. As an example of how the calculation is done, we start with the following data from the superheated vapor portion of the steam tables.

 

P = 1.80 Mpa P = 2.00 Mpa
T (°C) \hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right) \hat{U}(\mathrm{~kJ} / \mathrm{kg}) \hat{V}\left(\mathrm{~m}^{3} / \mathrm{kg}\right) \hat{U}(\mathrm{~kJ} / \mathrm{kg})
800 0.2742 3657.6 0.2467 3657
900 0.3001 3849.9 0.2700 3849.3
1000 0.3260 4048.5 0.2933 4048.0

 

To proceed, we need values of the internal energy at two different temperatures and the same specific volume. We will use P = 2.00 MPa and T = 1000°C as one point; at these conditions \hat{V}=0.2933 \mathrm{~m}^{3} / \mathrm{kg} and \hat{U}=4048.0 \mathrm{~kJ} / \mathrm{kg}. We now need to find the temperature at which \hat{V}=0.2933 \mathrm{~m}^{3} / \mathrm{kg} at P=1.80 \mathrm{MPa}. We use linear interpolation for this:

 

\frac{T-800}{900-800}=\frac{\hat{V}(T, 1.80 \mathrm{MPa})-\hat{V}\left(800^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)}{\hat{V}\left(900^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)-\hat{V}\left(800^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)}=\frac{0.2933-0.2742}{0.3001-0.2742}

 

so that T = 873.75°C. Next we need the internal energy \hat{U} at T = 873.75°C and P = 1.80 MPa (since at these conditions \hat{V}=0.2933 \mathrm{~m}^{3} / \mathrm{kg} ).

 

Again using linear interpolation,

\begin{aligned}\frac{873.75-800}{900-800} &=\frac{\hat{U}\left(873.75^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)-\hat{U}\left(800^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)}{\hat{U}\left(900^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)-\hat{U}\left(800^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)} \\\\&=\frac{\hat{U}\left(873.75^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)-3657.6}{3849.9-3657.6}\end{aligned}

 

we find that

 

\hat{U}\left(873.75^{\circ} \mathrm{C}, 1.80 \mathrm{MPa}\right)=\hat{U}\left(873.75^{\circ} \mathrm{C}, 0.2933 \mathrm{~m}^{3} / \mathrm{kg}\right)=3799.4 \mathrm{~kJ} / \mathrm{kg}

 

Finally, replacing the derivative by a finite difference, and for the average temperature [i.e., T = (1000+873.75) / 2=936.9°C], we have

 

\begin{aligned}\hat{C}_{\mathrm{V}}\left(T=936.9^{\circ} \mathrm{C}, \hat{V}=0.2933 \mathrm{~m}^{3} / \mathrm{kg}\right) \\\\& \approx \frac{\hat{U}\left(1000^{\circ} \mathrm{C}, 0.2933 \mathrm{~m}^{3} / \mathrm{kg}\right)-\hat{U}\left(873.75^{\circ} \mathrm{C}, 0.2933 \mathrm{~m}^{3} / \mathrm{kg}\right)}{1000^{\circ} \mathrm{C}-873.75^{\circ} \mathrm{C}} \\\\&=\frac{4048.0-3799.4}{1000-873.75}=1.969 \frac{\mathrm{kJ}}{\mathrm{kg} \mathrm{K}}>0\end{aligned}

 

Similarly, we would find that \hat{C}_{\mathrm{V}}>0 at all other conditions.

Related Answered Questions