Question 5.P.11: Using [ X , P] = i h, calculate the various commutation rela...

Using [\hat{X},\hat{P} ]=i\hbar, calculate the various commutation relations between the following opera-tors\overset{2}{}

\hat{T}_{1}=\frac{1}{4} (\hat{P}^{2}-\hat{X}^{2} ) ,   \hat{T}_{2}=\frac{1}{4}(\hat{X}\hat{P} +\hat{P} \hat{X}),    \hat{T}_{3}=\frac{1}{4} (\hat{P}^{2}+\hat{X}^{2} ).
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The operators \hat{T}_{1},\hat{T}_{2}, and \hat{T}_{3} can be viewed as describing some sort of collective vibrations; \hat{T}_{3} has the structure of a harmonic oscillator Hamiltonian. The first commutator can be calculated as follows:

[\hat{T}_{1},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2}-\hat {X}^{2},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2},\hat{T}_{2}]-\frac{1}{4}[\hat{X}^{2},\hat{T}_{2}],              (5.289)

where, using the commutation relation [\hat{X},\hat{P} ]=i\hbar , we have

[\hat{P}^{2},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2},\hat{X}\hat {P}]+\frac{1}{4}[\hat{P}^{2},\hat{P}\hat{X}]

 

=\frac{1}{4}\hat{P}[\hat{P},\hat{X}\hat{P}]+\frac{1}{4}[\hat{P},\hat{X}\hat{P}]\hat{P}+\frac{1}{4}\hat{P}[\hat{P}, \hat {P}\hat{X}]+ \frac{1}{4}[\hat{P},\hat{P}\hat{X}]\hat{P}

 

=\frac{1}{4}\hat{P}[\hat{P},\hat{X}]\hat{P}+\frac{1}{4}[\hat {P},\hat{X}]\hat{P}^{2} +\frac{1}{4}\hat{P}^{2}[\hat{P},\hat{X}]+ \frac{1}{4}\hat{P}[\hat{P},\hat{X}]\hat{P}

 

=-\frac{i\hbar }{4} \hat{P}^{2} -\frac{i\hbar }{4} \hat {P}^{2}-\frac{i\hbar }{4} \hat{P}^{2}-\frac{i\hbar }{4} \hat{P}^{2} =i\hbar \hat{P}^{2},                               (5.290)

 

[\hat{X}^{2},\hat{T}_{2}]=\frac{1}{4}[\hat{X}^{2},\hat{X} \hat{P}]+\frac{1}{4}[\hat{X}^{2},\hat{P}\hat{X}]

 

=\frac{1}{4}\hat{X}[\hat{X},\hat{X}\hat{P}]+\frac{1}{4}[\hat{X},\hat{X}\hat{P}]\hat{X}+\frac{1}{4}\hat{X}[\hat{X},\hat{P} \hat{X}]+ \frac{1}{4}[\hat{X},\hat{P}\hat{X}]\hat{X}

 

=\frac{1}{4}\hat{X}^{2} [\hat{X},\hat{P}]+\frac{1}{4}\hat{X}[\hat{X},\hat{P}]\hat{X} +\frac{1}{4}\hat{X}[\hat{X},\hat{P}]\hat {X}+ \frac{1}{4}[\hat{X},\hat{P}]\hat{X}^{2}

 

=\frac{i\hbar }{4} \hat{X}^{2} +\frac{i\hbar }{4} \hat{X}^{2} +\frac{i\hbar }{4} \hat{X}^{2}+\frac{i\hbar }{4} \hat{X}^{2}=i\hbar \hat{X}^{2};                          (5.291)

hence

[\hat{T}_{1},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2}-\hat {X}^{2},\hat{T}_{2}]=-\frac{1}{4}[i\hbar \hat{P}^{2}+i\hbar \hat {X}^{2}]=-i\hbar \hat{T}_{3}.                  (5.292)

The second commutator is calculated as follows:

[\hat{T}_{2},\hat{T}_{3}]=\frac{1}{4}[\hat{T}_{2},\hat {P}^{2}+\hat{X}^{2}]=\frac{1}{4}[\hat{T}_{2},\hat{P}^{2}]+\frac{1}{4}[\hat{T}_{2},\hat{X}^{2}],           (5.293)

where [\hat{T}_{2},\hat{P}^{2}] and [\hat {T}_{2},\hat{X}^{2}] were calculated in (5.290) and (5.291):

[\hat{T}_{2},\hat{P}^{2}]=i\hbar \hat{P}^{2},      [\hat{T}_{2},\hat{X}^{2}]=-i\hbar \hat{X}^{2}.           (5.294)

Thus, we have

[\hat{T}_{2},\hat{T}_{3}]=\frac{1}{4}(i\hbar \hat{P}^{2}-i\hbar \hat{X}^{2})=i\hbar \hat{T}_{1}.                     (5.295)

The third commutator is

[\hat{T}_{3},\hat{T}_{1}]=\frac{1}{4}[\hat{T}_{3},\hat {P}^{2}-\hat{X}^{2}]=\frac{1}{4}[\hat{T}_{3},\hat{P}^{2}]-\frac{1}{4}[\hat{T}_{3},\hat{X}^{2}],              (5.296)

where

[\hat{T}_{3},\hat{P}^{2}]=\frac{1}{4}[\hat{P}^{2},\hat {P}^{2}]+\frac{1}{4}[\hat{X}^{2},\hat{P}^{2}]=\frac{1}{4}[\hat {X}^{2},\hat{P}^{2}]=\frac{1}{4}\hat{X}[\hat{X},\hat{P}^{2}]+ \frac{1}{4}[\hat{X},\hat{P}^{2}]\hat{X}

 

=\frac{1}{4}\hat{X}\hat{P}[\hat{X},\hat{P}]+\frac{1}{4}\hat {X}[\hat{X},\hat{P}]\hat{P}+\frac{1}{4}\hat{P}[\hat{X},\hat {P}]\hat{X}+\frac{1}{4}[\hat{X},\hat{P}]\hat{P}\hat{X}

 

=\frac{i\hbar }{4}(2\hat{X}\hat{P}+2\hat{P}\hat{X}) =\frac{i\hbar }{2}(\hat{X}\hat{P}+\hat{P}\hat{X}),               (5.297)

 

[\hat{T}_{3},\hat{X}^{2}]=\frac{1}{4}[\hat{P}^{2},\hat {X}^{2}]+\frac{1}{4}[\hat{X}^{2},\hat{X}^{2}]=\frac{1}{4}[\hat {P}^{2},\hat{X}^{2}]=-\frac{i\hbar }{2}(\hat{X}\hat{P}+\hat {P}\hat{X});           (5.298)

hence

[\hat{T}_{3},\hat{T}_{1}]=\frac{1}{4}[\hat{T}_{3},\hat {P}^{2}]-\frac{1}{4}[\hat{T}_{3},\hat{X}^{2}]=\frac{i\hbar }{8} (\hat{X}\hat{P}+\hat{P}\hat{X})+\frac{i\hbar }{8} (\hat{X}\hat{P} +\hat{P}\hat{X})

 

=\frac{i\hbar }{4}(\hat{X}\hat{P}+\hat{P}\hat{X})=i\hbar \hat{T}_{2}.                                      (5.299)

In sum, the commutation relations between \hat{T}_{1},\hat {T}_{2}, and \hat{T}_{3} are

[\hat{T}_{1},\hat{T}_{2}]=-i\hbar \hat{T}_{3},     [\hat{T}_{2} ,\hat{T}_{3}]=i\hbar \hat{T}_{1}, [\hat{T}_{3},    \hat{T}_{1}] =i\hbar \hat{T}_{2}.                    (5.300)

These relations are similar to those of ordinary angular momentum, save for the minus sign in [\hat{T}_{1},\hat{T}_{2}]=-i\hbar \hat{T}_{3}.

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...