The operators \hat{T}_{1},\hat{T}_{2}, and \hat{T}_{3} can be viewed as describing some sort of collective vibrations; \hat{T}_{3} has the structure of a harmonic oscillator Hamiltonian. The first commutator can be calculated as follows:
[\hat{T}_{1},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2}-\hat {X}^{2},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2},\hat{T}_{2}]-\frac{1}{4}[\hat{X}^{2},\hat{T}_{2}], (5.289)
where, using the commutation relation [\hat{X},\hat{P} ]=i\hbar , we have
[\hat{P}^{2},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2},\hat{X}\hat {P}]+\frac{1}{4}[\hat{P}^{2},\hat{P}\hat{X}]
=\frac{1}{4}\hat{P}[\hat{P},\hat{X}\hat{P}]+\frac{1}{4}[\hat{P},\hat{X}\hat{P}]\hat{P}+\frac{1}{4}\hat{P}[\hat{P}, \hat {P}\hat{X}]+ \frac{1}{4}[\hat{P},\hat{P}\hat{X}]\hat{P}
=\frac{1}{4}\hat{P}[\hat{P},\hat{X}]\hat{P}+\frac{1}{4}[\hat {P},\hat{X}]\hat{P}^{2} +\frac{1}{4}\hat{P}^{2}[\hat{P},\hat{X}]+ \frac{1}{4}\hat{P}[\hat{P},\hat{X}]\hat{P}
=-\frac{i\hbar }{4} \hat{P}^{2} -\frac{i\hbar }{4} \hat {P}^{2}-\frac{i\hbar }{4} \hat{P}^{2}-\frac{i\hbar }{4} \hat{P}^{2} =i\hbar \hat{P}^{2}, (5.290)
[\hat{X}^{2},\hat{T}_{2}]=\frac{1}{4}[\hat{X}^{2},\hat{X} \hat{P}]+\frac{1}{4}[\hat{X}^{2},\hat{P}\hat{X}]
=\frac{1}{4}\hat{X}[\hat{X},\hat{X}\hat{P}]+\frac{1}{4}[\hat{X},\hat{X}\hat{P}]\hat{X}+\frac{1}{4}\hat{X}[\hat{X},\hat{P} \hat{X}]+ \frac{1}{4}[\hat{X},\hat{P}\hat{X}]\hat{X}
=\frac{1}{4}\hat{X}^{2} [\hat{X},\hat{P}]+\frac{1}{4}\hat{X}[\hat{X},\hat{P}]\hat{X} +\frac{1}{4}\hat{X}[\hat{X},\hat{P}]\hat {X}+ \frac{1}{4}[\hat{X},\hat{P}]\hat{X}^{2}
=\frac{i\hbar }{4} \hat{X}^{2} +\frac{i\hbar }{4} \hat{X}^{2} +\frac{i\hbar }{4} \hat{X}^{2}+\frac{i\hbar }{4} \hat{X}^{2}=i\hbar \hat{X}^{2}; (5.291)
hence
[\hat{T}_{1},\hat{T}_{2}]=\frac{1}{4}[\hat{P}^{2}-\hat {X}^{2},\hat{T}_{2}]=-\frac{1}{4}[i\hbar \hat{P}^{2}+i\hbar \hat {X}^{2}]=-i\hbar \hat{T}_{3}. (5.292)
The second commutator is calculated as follows:
[\hat{T}_{2},\hat{T}_{3}]=\frac{1}{4}[\hat{T}_{2},\hat {P}^{2}+\hat{X}^{2}]=\frac{1}{4}[\hat{T}_{2},\hat{P}^{2}]+\frac{1}{4}[\hat{T}_{2},\hat{X}^{2}], (5.293)
where [\hat{T}_{2},\hat{P}^{2}] and [\hat {T}_{2},\hat{X}^{2}] were calculated in (5.290) and (5.291):
[\hat{T}_{2},\hat{P}^{2}]=i\hbar \hat{P}^{2}, [\hat{T}_{2},\hat{X}^{2}]=-i\hbar \hat{X}^{2}. (5.294)
Thus, we have
[\hat{T}_{2},\hat{T}_{3}]=\frac{1}{4}(i\hbar \hat{P}^{2}-i\hbar \hat{X}^{2})=i\hbar \hat{T}_{1}. (5.295)
The third commutator is
[\hat{T}_{3},\hat{T}_{1}]=\frac{1}{4}[\hat{T}_{3},\hat {P}^{2}-\hat{X}^{2}]=\frac{1}{4}[\hat{T}_{3},\hat{P}^{2}]-\frac{1}{4}[\hat{T}_{3},\hat{X}^{2}], (5.296)
where
[\hat{T}_{3},\hat{P}^{2}]=\frac{1}{4}[\hat{P}^{2},\hat {P}^{2}]+\frac{1}{4}[\hat{X}^{2},\hat{P}^{2}]=\frac{1}{4}[\hat {X}^{2},\hat{P}^{2}]=\frac{1}{4}\hat{X}[\hat{X},\hat{P}^{2}]+ \frac{1}{4}[\hat{X},\hat{P}^{2}]\hat{X}
=\frac{1}{4}\hat{X}\hat{P}[\hat{X},\hat{P}]+\frac{1}{4}\hat {X}[\hat{X},\hat{P}]\hat{P}+\frac{1}{4}\hat{P}[\hat{X},\hat {P}]\hat{X}+\frac{1}{4}[\hat{X},\hat{P}]\hat{P}\hat{X}
=\frac{i\hbar }{4}(2\hat{X}\hat{P}+2\hat{P}\hat{X}) =\frac{i\hbar }{2}(\hat{X}\hat{P}+\hat{P}\hat{X}), (5.297)
[\hat{T}_{3},\hat{X}^{2}]=\frac{1}{4}[\hat{P}^{2},\hat {X}^{2}]+\frac{1}{4}[\hat{X}^{2},\hat{X}^{2}]=\frac{1}{4}[\hat {P}^{2},\hat{X}^{2}]=-\frac{i\hbar }{2}(\hat{X}\hat{P}+\hat {P}\hat{X}); (5.298)
hence
[\hat{T}_{3},\hat{T}_{1}]=\frac{1}{4}[\hat{T}_{3},\hat {P}^{2}]-\frac{1}{4}[\hat{T}_{3},\hat{X}^{2}]=\frac{i\hbar }{8} (\hat{X}\hat{P}+\hat{P}\hat{X})+\frac{i\hbar }{8} (\hat{X}\hat{P} +\hat{P}\hat{X})
=\frac{i\hbar }{4}(\hat{X}\hat{P}+\hat{P}\hat{X})=i\hbar \hat{T}_{2}. (5.299)
In sum, the commutation relations between \hat{T}_{1},\hat {T}_{2}, and \hat{T}_{3} are
[\hat{T}_{1},\hat{T}_{2}]=-i\hbar \hat{T}_{3}, [\hat{T}_{2} ,\hat{T}_{3}]=i\hbar \hat{T}_{1}, [\hat{T}_{3}, \hat{T}_{1}] =i\hbar \hat{T}_{2}. (5.300)
These relations are similar to those of ordinary angular momentum, save for the minus sign in [\hat{T}_{1},\hat{T}_{2}]=-i\hbar \hat{T}_{3}.