Question 11.13: Water at 70^◦ F flows in a prototype 1700-ft-long concrete r...

Water at 70^{\circ } F flows in a prototype 1700-ft-long concrete rectangular open channel with a width of 5 ft, a uniform flow depth of 3ft, and an absolute channel roughness of 0.01 ft, as illustrated in Figure EP 11.13. A smaller model of the larger prototype is designed in order to study the flow characteristics of turbulent open channel flow. The model fluid is also water at 70^{\circ } F , the velocity of water in the smaller model channel is 60 ft/sec, and the model scale, λ is 0.25. The flow resistance is modeled by the Manning’s roughness coefficient, n = f^n ( C_{D} ). (a) Determine the friction slope (and head loss) in the flow of the water in the model. (b) Determine the velocity flow of the water in the prototype open channel flow in order to achieve dynamic similarity between the model and the prototype. (c) Determine the friction slope (and head loss) in the flow of the water in the prototype in order to achieve dynamic similarity between the model and the prototype.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In order to determine the friction slope (and head loss) in flow of the water in the model, the major head loss equation, Equation 11.141 h_{f} = \frac{\tau _{w}L}{\gamma R_{h}} = S_{f}L = C_{D}\rho v^{2} \frac{L}{\gamma R_{h}} = \frac{v^{2}L}{C^{2}R_{h}} = f \frac{L}{(4R_{h})} \frac{v^{2}}{2g} = \left(\frac{vn}{R_{h}^{2/3}} \right)^{2}L , is applied as follows:

h_{f} = S_{f}L = \left(\frac{vn}{R_{h}^{2/3}} \right)^{2}L

where the Manning’s roughness coefficient, n is used to model the flow resistance. Empirical calibration of the Manning’s roughness coefficient, n assumes turbulent flow, thus it is independent of R, and is only a function of ɛ/y. The absolute channel roughness, ɛ is indirectly modeled by the type of channel material, as illustrated in Table 8.6, which presents the Manning’s roughness coefficient, n for various channel materials. It important to note that although the derivation/formulation of the Manning’s equation assumes no specific units (SI or BG), the Manning’s roughness coefficient, n has dimensions of L^{-1/3}T . Furthermore, because the Manning’s roughness coefficient, n in Table 8.6 has been provided/calibrated in SI units m^{-1/3} sec, it must be adjusted when using BG units. In order to convert the Manning’s roughness coefficient, n with units of m^{-1/3} sec to units of ft^{-1/3} sec, note that 3.281 ft = 1m; thus:

\frac{\left[\frac{3.281 ft}{1m} \right] ^{1/3} }{n [m^{-1/3}s]} = \frac{1.486}{n[ft^{-1/3}sec ]}

Thus, for a concrete channel, assume n = 0.012 m^{-1/3} sec, which is converted to BG units as follows:

n_{m}: = 0.012 m^{\frac{-1}{3} } sec                           m: = 3.281 ft                          n_{m} = 8.076 \times 10^{-3} \frac{s}{ft^{0.333}}

Furthermore, in order to determine the length, depth of flow, and the absolute channel roughness of the model channel, the model scale, λ (inverse of the length ratio) is applied. The fluid properties for water are given in Table A.2 in Appendix A.

b_{p}: = 5 ft                           y_{p}: = 3 ft                           L_{p}: = 1700 ft                           \varepsilon _{p} : = 0.01 ft                           \lambda : = 0.25

Guess value:                           b_{m}: = 1 ft                           y_{m}: = 1 ft                           L_{m}: = 1 ft                           \varepsilon _{m}: = 0.01 ft

Given

\lambda = \frac{b_{m}}{b_{p}}                           \lambda = \frac{y_{m}}{y_{p}}                           \lambda = \frac{L_{m}}{L_{p}}                         \lambda = \frac{\varepsilon _{m}}{\varepsilon _{p}}
\left ( \begin{matrix} b_{m} \\ y_{m} \\ L_{m} \\ \varepsilon _{m} \end{matrix} \right ) : = Find (b_{m}, y_{m}, L_{m}, \varepsilon _{m}) = \left ( \begin{matrix} 1.25 \\ 0.75 \\ 425 \\ 2.5 \times 10^{-3} \end{matrix} \right ) ft
slug: = 1 lb \frac{sec^{2}}{ft}                           \rho _{m} : = 1.936 \frac{slug}{ft^{3}}                           \mu _{m} : = 20.5 \times 10^{-6} lb \frac{sec}{ft^{2}}

V_{m}: = 60 \frac{ft}{sec}                            R_{m}: = \frac{\rho _{m} .V_{m} .y_{m}}{\mu _{m}} = 4.25 \times 10^{6}

A_{m}: = b_{m} . y_{m} = 0.938 ft^{2}                           P_{m}: = 2.y_{m} + b_{m} = 2.75 ft                           R_{hm}: = \frac{A_{m}}{P_{m} } = 0.341 ft

Guess value:                          h_{fm}: = 1 ft                           S_{fm}: = 0.01 \frac{ft}{ft}

Given

h_{fm} = \left(\frac{V_{m}n_{m}}{R_{hm}^{\frac{2}{3} }} \right)^{2} L_{m}                                                     S_{fm} = \frac{h_{fm}}{L_{m}}

\left ( \begin{matrix} h_{fm} \\ S_{fm} \end{matrix} \right ) : = Find ( h_{fm}, S_{fm} )

h_{fm} = 418.998 ft                                                           S_{fm} = 0.986 \frac{ft}{ft}

It is important to note that for uniform flow, the channel bottom slope, S_{o} is equal to the friction slope, S_{f} . Furthermore, in order to satisfy the geometric similarity requirement when applying the model scale (and the dynamic similarity requirement), the prototype channel bottom slope, S_{op} must equal the model channel bottom slope, S_{om} ; thus, the prototype friction slope, S_{fp} must equal the model friction slope, S_{fm} (see (b), (c) below).
(b)–(c) To determine the velocity flow of the water in the prototype open channel flow in order to achieve dynamic similarity between the model and the prototype for turbulent open channel flow, and to determine the friction slope (and head loss) in the flow of the water in the prototype in order to achieve dynamic similarity between the model and the prototype, for turbulent open channel flow, the ɛ/y must remain a constant between the model and prototype as follows:

\left(\frac{\varepsilon}{y} \right)_{p} = \left(\frac{\varepsilon }{y} \right)_{m}
\frac{\varepsilon _{p}}{y_{p}} = 3.333 \times 10^{-3}                           \frac{\varepsilon _{m}}{y_{m}} = 3.333 \times 10^{-3}

However, because the Manning’s roughness coefficient, n is independent of R, R does not need to remain a constant between the model and the prototype.
(b)–(c) To determine the velocity flow of the water in the prototype open channel flow in order to achieve dynamic similarity between the model and the prototype for turbulent open channel flow, and to determine the friction slope (and head loss) in the flow of the water in the prototype, in order to achieve dynamic similarity between the model and the prototype for turbulent open channel flow, the Manning’s roughness coefficient, n must remain a constant between the model and the prototype (which is a direct result of maintaining a constant ɛ/y between the model and the prototype, and applying the “gravity model” similitude scale ratio; specifically the velocity ratio, v_{r} given in Table 11.2) as follows:

\underbrace{\left[\frac{\frac{h_{f}}{v^{2}L} }{R_{h}^{4/3}} \right]_{p} }_{n^{2}_{p}} = \underbrace{\left[\frac{\frac{h_{f}}{v^{2}L} }{R_{h}^{4/3}} \right]_{m} }_{n^{2}_{m}}
v_{r} = \frac{v_{p}}{v_{m}} = \frac{\left(\sqrt{gL}\right) _{p} }{\left(\sqrt{gL}\right) _{m}} = L_{r}^{\frac{1}{2} }

\rho _{p} : = 1.936 \frac{slug}{ft^{3}}                           \mu _{p} : = 20.5 \times 10^{-6} lb \frac{sec}{ft^{2}}                           g: = 32.174 \frac{ft}{sec^{2}}

A_{p}: = b_{p} . y_{p} = 15 ft^{2}                           P_{p}: = 2.y_{p} + b_{p} = 11 ft                           R_{hp}: = \frac{A_{p}}{P_{p} } = 1.364 ft

Guess value:                           V_{p}: = 1 \frac{ft}{sec}                           h_{fp}: = 1 ft                           S_{fp}: = 0.01 \frac{ft}{ft}
n_{p}: = 0.01 ft^{\frac{-1}{3} }sec

Given

n_{p}^{2} = \frac{h_{fp}}{\left(\frac{V^{2}_{p}.L_{p}}{R_{hp}^{\frac{4}{3} }} \right) }                           \frac{V_{p}}{\sqrt{g.y_{p}} } = \frac{V_{m}}{\sqrt{g.y_{m}} }

n_{p} = n_{m}                           S_{fp} = \frac{h_{fp}}{L_{p}}                           S_{fp} = S_{fm}
\left ( \begin{matrix} V_{p} \\ h_{fp} \\ S_{fp} \\ n_{p} \end{matrix} \right ) : = Find (V_{p}, h_{fp}, S_{fp}, n_{p} )

V_{p} = 120 \frac{ft}{s}                           h_{fp} = 1.676 \times 10^{3} ft                           S_{fp} = 0.986 \frac{ft}{ft}
n_{p} = 8.077 \times 10^{-3}  \frac{s}{ft^{0.333}}

Furthermore, the Froude number, F remains a constant between the model and the prototype as follows:

F_{m}: = \frac{V_{m}}{\sqrt{g.y_{m}} } = 12.214                           F_{p}: = \frac{V_{p}}{\sqrt{g.y_{p}}} = 12.214

Therefore, although the similarity requirements regarding the independent π term, \varepsilon /y ((\varepsilon /y)_{p} = (\varepsilon /y)_{m} = 3.333 \times 10^{-3}), the dependent π term, F (“gravity model”) ( F_{p} = F_{m} = 12.214 ), and the dependent π term, friction slope, S_{f} (S_{fp} = S_{fm} = 0.986 ft/ft ) are theoretically satisfied, the dependent π term (i.e., the friction factor, f ) will actually/practically remain a constant between the model and its prototype ( n_{p} = n_{m}= 8.076 \times 10^{-3} ft^{-1/3}sec ) only if it is practical to maintain/attain the model velocity, slope, fluid, scale, and cost. Furthermore, because the Manning’s roughness coefficient, n is independent of R, R does not need to remain a constant between the model and the prototype as follows:

R_{m} = 4.25 \times 10^{6}                           R_{p} : = \frac{\rho _{p} . V_{p}. Y_{p}}{\mu _{p}} = 3.4 \times 10^{7}

 

Table 8.6
Empirical Values for the Manning Roughness Coefficient, n (m^{−1/3} s) for Various Boundary Surfaces
Boundary Surface Manning Roughness
Coefficient, n (Min)
Manning Roughness
Coefficient, n (Max)
Lucite 0.008 0.010
Brass 0.009 0.013
Glass 0.009 0.013
Wood stave pipe 0.010 0.013
Neat cement surface 0.010 0.013
Plank flumes, planed 0.010 0.014
Vitrified sewer pipe 0.010 0.017
Concrete, precast 0.011 0.013
Cement mortar surfaces 0.011 0.015
Metal flumes, smooth 0.011 0.015
Plank flumes, unplaned 0.011 0.015
Common-clay drainage tile 0.011 0.017
Concrete, monolithic 0.012 0.016
Brick with cement mortar 0.012 0.017
Cast iron, new 0.013 0.017
Wood laminated 0.015 0.020
Asphalt, rough 0.016 0.016
Riveted steel 0.017 0.020
Cement rubble surfaces 0.017 0.030
Canals and ditches, smooth earth 0.017 0.025
Corrugated metal pipe 0.021 0.030
Metal flumes, corrugated 0.022 0.030
Gravel bottom with rubble 0.023 0.036
Canals (excavated or dredged)
Dredged in earth, smooth 0.025 0.033
In rock cuts, smooth 0.025 0.035
Rough beds and weeds on sides 0.025 0.040
Rock cuts, jagged and irregular 0.035 0.045
Dense weeds 0.050 0.120
Dense brush 0.080 0.140
Natural streams
Smoothest (clean, straight) 0.025 0.033
Roughest 0.045 0.060
Very weedy 0.075 0.150
Floodplains (brush) 0.035 0.070
streams 0.025 0.060

 

 

Table A.2
Physical Properties for Water at Standard Sea-Level Atmospheric Pressure as a Function of Temperature
Temperature
(θ)
^{\circ } F
Density
(ρ)
slug/ft^{3}
Specific
Weight
(γ)
Ib/ft^{3}
Absolute
(Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{3}
Kinematic
Viscosity
(ν)
10^{-6} ft^{2}/sec
Surface
Tension
(σ)
lb/ft
Vapor
Pressure
(\rho _{\nu } )
psia
Bulk
Modulus
of Elasticity
(E_{\upsilon } )
psi
32 1.940 62.42 37.46 19.31 0.00518 0.0885 293,000
40 1.940 62.43 32.29 16.64 0.00514 0.1220 294,000
50 1.940 62.41 27.35 14.10 0.00509 0.1780 305,000
60 1.938 62.37 23.59 12.17 0.00504 0.2560 311,000
70 1.936 62.30 20.50 10.59 0.00498 0.3630 320,000
80 1.934 62.22 17.99 9.30 0.00492 0.5070 322,000
90 1.931 62.11 15.95 8.26 0.00486 0.6980 323,000
100 1.927 62.00 14.24 7.39 0.00480 0.9490 327,000
110 1.923 61.86 12.84 6.67 0.00473 1.2750 331,000
120 1.918 61.71 11.68 6.09 0.00467 1.6920 333,000
130 1.913 61.55 10.69 5.58 0.00460 2.2200 334,000
140 1.908 61.38 9.81 5.14 0.00454 2.8900 330,000
150 1.902 61.20 9.05 4.76 0.00447 3.7200 328,000
160 1.896 61.00 8.38 4.42 0.00441 4.7400 326,000
170 1.890 60.80 7.80 4.13 0.00434 5.9900 322,000
180 1.883 60.58 7.26 3.85 0.00427 7.5100 318,000
190 1.876 60.36 6.78 3.62 0.00420 9.3400 313,000
200 1.868 60.12 6.37 3.41 0.00413 11.5200 308,000
212 1.860 59.83 5.93 3.19 0.00404 14.6900 300,000
^{\circ } C kg/m^{3} KN/m^{3} N-sec/m^{2} 10^{-6} m^{2} /sec N/m KN/m^{2}  abs 10^{6} KN/m^{2}
0 999.8 9.805 0.001781 1.785 0.0756 0.611 2.02
5 1000.0 9.807 0.001518 1.519 0.0749 0.872 2.06
10 999.7 9.804 0.001307 1.306 0.0742 1.230 2.10
15 999.1 9.798 0.001139 1.139 0.0735 1.710 2.14
20 998.2 9.789 0.001002 1.003 0.0728 2.340 2.18
25 997.0 9.777 0.000890 0.893 0.0720 3.170 2.22
30 995.7 9.765 0.000798 0.800 0.0712 4.240 2.25
40 992.2 9.731 0.000653 0.658 0.0696 7.380 2.28
50 988.0 9.690 0.000547 0.553 0.0679 12.330 2.29
60 983.2 9.642 0.000466 0.474 0.0662 19.920 2.28
70 977.8 9.589 0.000404 0.413 0.0644 31.160 2.25
80 971.8 9.530 0.000354 0.364 0.0626 47.340 2.20
90 965.3 9.467 0.000315 0.326 0.0608 70.100 2.14
100 958.4 9.399 0.000282 0.294 0.0589 101.330 2.07

 

 

 

 

Table 11.2
Similitude Scale Ratios for Physical Quantities for a Gravity Model
Physical
Quantity
FLT
System
MLT
System
Primary Scale Ratios Secondary/Similitude Scale Ratios for a Pressure Model
F_{r} = \frac{F_{G_{p}}}{F_{G_{m}}} =  \frac{F_{I_{p}}}{F_{I_{m}}} = constant \underbrace{\left[\left(\frac{ v}{\sqrt{gL} }  \right)_{p} \right] }_{F_{p}} = \underbrace{\left[\left(\frac { v}{\sqrt{ gL}  }  \right)_{m} \right] }_{F_{m}}
Geometrics
Length, L
L L L_{r} = \frac{L_{p}}{L_{m}}  L_{r} = \frac{L_{p}}{L_{m}} 
Area, A L^{2} L^{2} L_{r}^{2} = \frac{L_{p}^{2}}{L_{m}^{2}}  L_{r}^{2} = \frac{L_{p}^{2}}{L_{m}^{2}} 
Volume, V L^{3} L^{3} L_{r}^{3} = \frac{L_{p}^{3}}{L_{m}^{3}}  L_{r}^{3} = \frac{L_{p}^{3}}{L_{m}^{3}} 
Kinematics
Time, T
T T T_{r} = \frac{L_{r}}{v_{r}} T_{r} = \frac{L_{r}}{v_{r}} =  L_{r}^{1/2}
Velocity, v LT^{-1} LT^{-1} v_{r} = \frac{v_{p}}{v_{m}}  v_{r} = \frac{v_{p}}{v_{m}} = \frac{\left(\sqrt{gL}\right) _{p} }{\left(\sqrt{gL}\right) _{m}} = L_{r}^{1/2}
Acceleration, a LT^{-2} LT^{-2} a_{r} = \frac{L_{r}}{T_{r}^{2}} = \frac{v_{r}^{2}}{L_{r}}  a_{r} =  \frac{v_{r}^{2}}{L_{r}} =1
Discharge, Q L^{3}T^{-1} L^{3}T^{-1} Q_{r} = v_{r}. L_{r}^{2} =   L_{r}^{5/2}
Dynamics
Mass, M
FL^{-1}T^{2} M M_{r} = F_{r}a_{r}^{-1} =  \rho _{r} L_{r}^{3}
Force, F F MLT^{-2} F_{r} = \frac{F_{G_{p}}}{F_{G_{m}}} =  \frac{F_{I_{p}}}{F_{I_{m}}} F_{r} = \rho_{r} L_{r}^{3} g_{r} = \rho _{r} v^{2}_{r}  L_{r}^{2} 
Pressure, p FL^{-2} ML^{-1}T^{-2} p_{r} =  F_{r} L_{r}^{-2} =  \rho _{r} L_{r}
Momentum, Mv
or Impulse, FT
FT MLT^{-1} F_{r} T_{r} =  \rho _{r} L_{r}^{7/2}
Energy, E or
Work, W
FL ML^{2}T^{-2} W_{r} = F_{r} L_{r}=  \rho _{r} L_{r}^{4}
Power, P FLT^{-1} ML^{2}T^{-3} p_{r} =  W_{r} T_{r}^{-1} = \rho _{r}  L^{7/2}_{r}

 

Related Answered Questions