Question 11.16: Water at 70^◦ F flows in a prototype rectangular open channe...

Water at 70^{\circ } F flows in a prototype rectangular open channel with a width of 10 ft, and a sluice gate with a free outflow is inserted in the channel, as illustrated in Figure EP 11.16, in order to measure the flowrate. The opening of the gate is set at 3.28 ft, the depth of flow upstream of the sluice gate is 6.56 ft, and the depth of flow downstream of the sluice gate is 3.11 ft. A smaller model of the larger prototype is designed in order to study the flow characteristics of open channel flow in the flow-measuring device. The model fluid is also water at 70^{\circ } F F, the ideal downstream velocity (see Equation 9.285 v_{2i} = \frac{\sqrt{2g(y_{1}- y_{2})} }{\sqrt{1- \left(\frac{A_{2}}{A_{1}} \right)^{2} } } = \frac{\sqrt{2g(y_{1}- y_{2})} }{\sqrt{1- \left(\frac{by_{2}}{by_{1}} \right)^{2} } } = \frac{\sqrt{2g(y_{1}- y_{2})} }{\sqrt{1- \left(\frac{y_{2}}{y_{1}} \right)^{2} } } ) of flow of the water, v_{2i} in the smaller model open channel fitted with a sluice gate is 8.46 ft/sec, and the model scale, λ is 0.25. (a) Determine the actual discharge in the model sluice gate. (b) Determine the ideal downstream velocity of flow of the water in the prototype sluice gate in order to achieve dynamic similarity between the model and the prototype. (c) Determine the actual discharge in the prototype sluice gate in order to achieve dynamic similarity between the model and the prototype.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In order to determine the actual discharge in the model sluice gate, the actual discharge equation, Equation 11.158 Q_{a} = \underbrace{\left[\underbrace{\left(\frac{v_{a}}{\sqrt{2g\Delta y } } \right) }_{C_{v}} \underbrace{\left(\frac{A_{a}}{A_{i}} \right) }_{C_{c}} \right] }_{C_{d}} Q_{i} , is applied as follows:

Q_{a} = \underbrace{\left[\underbrace{\left(\frac{v_{a}}{\sqrt{2g\Delta y } } \right) }_{C_{v}} \underbrace{\left(\frac{A_{a}}{A_{i}} \right) }_{C_{c}} \right] }_{C_{d}} Q_{i}

where the C_{D} , or in the case of a sluice gate, the discharge coefficient, C_{d} , is used to model the flow resistance, and is a function of the geometry of the flow-measuring device, L_{1}/L =y_{1}/a , as illustrated in Figure 9.37. Furthermore, in order to determine the geometry  y_{1} , y_{2} , and a of the model channel and sluice gate, the model scale, λ (inverse of the length ratio) is applied as follows:

b_{p}: = 10 ft                       y_{1p}: = 6.56 ft                       y_{2p}: = 3.11 ft                       a_{p}: = 3.28 ft                       \lambda : = 0.25

Guess value:                b_{m}: = 1 ft                       y_{1m}: = 1 ft                       y_{2m}: = 0.5 ft                       a_{m}: = 0.5 ft

Given

\lambda = \frac{b_{m}}{b_{p}}                       \lambda = \frac{y_{1m}}{y_{1p}}                       \lambda = \frac{y_{2m}}{y_{2p}}                       \lambda = \frac{a_{m}}{a_{p}}
\left ( \begin{matrix} b_{m} \\ y_{1m} \\ y_{2m} \\ a_{m} \end{matrix} \right ) : = Find (b_{m}, y_{1m},y_{2m} , a_{m}) = \left ( \begin{matrix} 2.5 \\ 1.64 \\ 0.778 \\ 0.82 \end{matrix} \right ) ft

slug: = 1 lb \frac{sec^{2}}{ft}                       \rho _{m} : = 1.936 \frac{slug}{ft^{3}}                       \mu _{m} : = 20.5 \times 10^{-6} lb \frac{sec}{ft^{2}}

V_{2im}: = 8.46 \frac{ft}{sec}                       R_{m}: = \frac{\rho _{m} .V_{2im} .a_{m}}{\mu _{m}} = 6.551 \times 10^{5}

A_{2im}: = b_{m} .a_{m} = 2.05 ft^{2}                       Q_{im}: = V_{2im}. A_{2im} = 17.343 \frac{ft^{3}}{sec}

\frac{y_{1m}}{a_{m}} =2                       C_{dm}: = 0.51                        Q_{am}: =C_{dm}. Q_{im} = 8.845 \frac{ft^{3}}{sec}

(b)–(c) To determine the ideal downstream velocity of flow of the water in the prototype sluice gate in order to achieve dynamic similarity between the model and the prototype, and to determine the actual discharge in the prototype sluice gate in order to achieve dynamic similarity between the model and the prototype, the geometry L_{i}/L must remain a constant between the model and prototype as follows:

\left(\frac{L_{i}}{L} \right)_{p} = \left(\frac{L_{i}}{L} \right)_{m}

where the geometry is modeled as follows:

\frac{y_{1p}}{a_{p}} = 2                       \frac{y_{1m}}{a_{m}} = 2                       \frac{y_{2p}}{a_{p}} = 0.948                       \frac{y_{2m}}{a_{m}} = 0.948

However, because the discharge coefficient, C_{d} is independent of R for a sluice gate, R does not need to remain a constant between the model and the prototype.
(b)–(c) To determine the ideal downstream velocity of flow of the water in the prototype sluice gate in order to achieve dynamic similarity between the model and the prototype, and to determine the actual discharge in the prototype sluice gate in order to achieve dynamic similarity between the model and the prototype, the discharge coefficient, C_{d} must remain a constant between the model and the proto type (which is a direct result of maintaining a constant L_{i}/L between the model and the prototype and applying the “gravity model” similitude scale ratio; specifically the velocity ratio, v_{r} given in Table 11.2) as follows:

\underbrace{\left[\frac{Q_{a}}{\sqrt{2g\Delta y} (A_{i}) } \right]_{p} }_{C_{D_{p}} = C_{d_{p}}} = \underbrace{\left[\frac{Q_{a}}{\sqrt{2g\Delta y} (A_{i}) } \right]_{m} }_{C_{D_{m}} = C_{d_{m}}}
v_{r} = \frac{v_{p}}{v_{m}} = \frac{\left(\sqrt{gL } \right)_{p} }{\left(\sqrt{ gL} \right)_{m} } = L_{r}^{\frac{1}{2} }

\rho _{p} : = 1.936 \frac{slug}{ft^{3}}                       \mu _{p} : = 20.5 \times 10^{-6} lb \frac{sec}{ft^{2}}                       g: = 32.174 \frac{ft}{sec^{2}}

A_{2ip}: = b_{p} .a_{p} = 32.8 ft^{2}

Guess value:                       V_{2ip}: = 1 \frac{ft}{sec}                       Q_{ap} : = 1 \frac{ft^{3}}{sec}                       Q_{ip} : = 1 \frac{ft^{3}}{sec}                       C_{dp} : = 0.1

Given

C_{dp} = \frac{Q_{ap}}{Q_{ip}}                       \frac{V_{2ip}}{\sqrt{g.a_{p}}} = \frac{V_{2im}}{\sqrt{g.a_{m}}}

C_{dp} = C_{dm}                       Q_{ip} = V_{2ip}. A_{2ip}
\left ( \begin{matrix} V_{2ip} \\ Q_{ap} \\ Q_{ip} \\ C_{dp} \end{matrix} \right ) : = Find (V_{2ip}, Q_{ap},Q_{ip} ,C_{dp})

V_{2ip} = 16.92 \frac{ft}{s}                       Q_{ap} = 283.038 \frac{ft^{3}}{sec}                       Q_{ip} = 554.976 \frac{ft^{3}}{sec}                       C_{dp} = 0.51   

Furthermore, the Froude number, F remains a constant between the model and the prototype as follows:

F_{m}: = \frac{V_{2im}}{\sqrt{g.a_{m}}} = 1.647                       F_{p}: = \frac{V_{2ip}}{\sqrt{g.a_{p}}} = 1.647

Therefore, although the similarity requirements regarding the independent π term, L_{i}/L (y_{1p}/a_{p}=y_{1m}/a_{m} = 2 and y_{2p}/a_{p}=y_{2m}/a_{m} = 0.948) and the dependent π term, F (“gravity model”) ( F_{p} = F_{m} = 1.647 ) are theoretically satisfied, the dependent π term (i.e., the discharge coefficient, C_{d} ) will actually/practically remain a constant between the model and its prototype ( C_{dp} = C_{dm} = 0.51) only if it is practical to maintain/attain the model velocity, flow depth, fluid, scale, and cost. Furthermore, because the discharge coefficient, C_{d} is independent of R for a sluice gate, R does not need to remain a constant between the model and the prototype as follows:

R_{m} = 6.551 \times 10^{5}                       R_{p} : = \frac{\rho _{p} . V_{2ip}. a_{p}}{\mu _{p}} =5.241 \times 10^{6}

 

Table 11.2
Similitude Scale Ratios for Physical Quantities for a Gravity Model
Physical
Quantity
FLT
System
MLT
System
Primary Scale Ratios Secondary/Similitude Scale Ratios for a Pressure Model
F_{r} = \frac{F_{G_{p}}}{F_{G_{m}}} =  \frac{F_{I_{p}}}{F_{I_{m}}} = constant \underbrace{\left[\left(\frac{ v}{\sqrt{gL} }  \right)_{p} \right] }_{F_{p}} = \underbrace{\left[\left(\frac { v}{\sqrt{ gL}  }  \right)_{m} \right] }_{F_{m}}
Geometrics
Length, L
L L L_{r} = \frac{L_{p}}{L_{m}}  L_{r} = \frac{L_{p}}{L_{m}} 
Area, A L^{2} L^{2} L_{r}^{2} = \frac{L_{p}^{2}}{L_{m}^{2}}  L_{r}^{2} = \frac{L_{p}^{2}}{L_{m}^{2}} 
Volume, V L^{3} L^{3} L_{r}^{3} = \frac{L_{p}^{3}}{L_{m}^{3}}  L_{r}^{3} = \frac{L_{p}^{3}}{L_{m}^{3}} 
Kinematics
Time, T
T T T_{r} = \frac{L_{r}}{v_{r}} T_{r} = \frac{L_{r}}{v_{r}} =  L_{r}^{1/2}
Velocity, v LT^{-1} LT^{-1} v_{r} = \frac{v_{p}}{v_{m}}  v_{r} = \frac{v_{p}}{v_{m}} = \frac{\left(\sqrt{gL}\right) _{p} }{\left(\sqrt{gL}\right) _{m}} = L_{r}^{1/2}
Acceleration, a LT^{-2} LT^{-2} a_{r} = \frac{L_{r}}{T_{r}^{2}} = \frac{v_{r}^{2}}{L_{r}}  a_{r} =  \frac{v_{r}^{2}}{L_{r}} =1
Discharge, Q L^{3}T^{-1} L^{3}T^{-1} Q_{r} = v_{r}. L_{r}^{2} =   L_{r}^{5/2}
Dynamics
Mass, M
FL^{-1}T^{2} M M_{r} = F_{r}a_{r}^{-1} =  \rho _{r} L_{r}^{3}
Force, F F MLT^{-2} F_{r} = \frac{F_{G_{p}}}{F_{G_{m}}} =  \frac{F_{I_{p}}}{F_{I_{m}}} F_{r} = \rho_{r} L_{r}^{3} g_{r} = \rho _{r} v^{2}_{r}  L_{r}^{2} 
Pressure, p FL^{-2} ML^{-1}T^{-2} p_{r} =  F_{r} L_{r}^{-2} =  \rho _{r} L_{r}
Momentum, Mv
or Impulse, FT
FT MLT^{-1} F_{r} T_{r} =  \rho _{r} L_{r}^{7/2}
Energy, E or
Work, W
FL ML^{2}T^{-2} W_{r} = F_{r} L_{r}=  \rho _{r} L_{r}^{4}
Power, P FLT^{-1} ML^{2}T^{-3} p_{r} =  W_{r} T_{r}^{-1} = \rho _{r}  L^{7/2}_{r}
9.37

Related Answered Questions