Question 10.8: Water flows in a wide channel at q = 10 m^3/(s · m) and y1 =...

Water flows in a wide channel at q = 10 m^3/(s · m) and y_1 = 1.25 m. If the flow undergoes a hydraulic jump, compute (a) y_2,  (b)  V_2,  (c)  Fr_2,  (d)  h_f, (e) the percentage dissipation, (f) the power dissipated per unit width, and (g) the temperature rise due to dissipation if c_p = 4200 J/(kg · K).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Part (a)

The upstream velocity is

V_1 = \frac{q}{y_1} = \frac{10  m^3/(s \cdot m)}{1.25  m} = 8.0  m/s

The upstream Froude number is therefore

Fr_1 = \frac{V_1}{(gy_1)^{1/2}} = \frac{8.0}{[9.81(1.25)]^{1/2}} = 2.285

From Fig. 10.12 this is a weak jump. The depth y_2 is obtained from Eq. (10.43):

\frac{2y_2}{y_1} = -1 + (1 + 8 Fr^2_1)^{1/2}                                        (10.43)

\frac{2y_2}{y_1} = -1 + [1 + 8(2.285)^2]^{1/2} = 5.54

or                      y_2 = \frac{1}{2} y_1(5.54) = \frac{1}{2}(1.25)(5.54) = 3.46  m

Part (b)

From Eq. (10.44) the downstream velocity is

V_2 = \frac{V_1y_1}{y_2}                               (10.44)

V_2 = \frac{V_1y_1}{y_2} = \frac{8.0(1.25)}{3.46} = 2.89  m/s

Part (c)

The downstream Froude number is

Fr_2 = \frac{V_2}{(gy_2)^{1/2}} = \frac{2.89}{[9.81(3.46)]^{1/2}} = 0.496

Part (d)

As expected, Fr_2 is subcritical. From Eq. (10.45) the dissipation loss is

h_f = \frac{(y_2 – y_1)^3}{4y_1y_2}                                            (10.45)

h_f = \frac{(3.46 – 1.25)^3}{4(3.46)(1.25)} = 0.625  m

Part (e)

The percentage dissipation relates h_f to upstream energy:

E_1 = y_1 + \frac{V^2_1}{2g} = 1.25 + \frac{(8.0)^2}{2(9.81)} = 4.51  m

Hence                        Percentage loss = (100) \frac{h_f}{E_1} = \frac{100(0.625)}{4.51} = 14 percent

Part (f)

The power dissipated per unit width is

Power = \rho gqh_f = (9800  N/m^3) [10  m^3/(s \cdot m)](0.625  m) = 61.3  kW/m

Part (g)

Finally, the mass flow rate is \dot{m} = \rho q = (1000  kg/m^3)[10  m^3/(s \cdot m)] = 10,000  kg/(s \cdot m), and the temperature rise from the steady flow energy equation is

Power dissipated = \dot{m} c_p \Delta T

or                          61,300 W/m = [10,000 kg/(s · m)][4200 J/(kg · K)]ΔT

from which

ΔT = 0.0015 K

The dissipation is large, but the temperature rise is negligible.

capture-20220303-205110

Related Answered Questions