Question 6.243E: Water in a piston/cylinder is at 150 lbf/in.^2, 900 F, as sh...

Water in a piston/cylinder is at 150 lbf / in .^{2}, 900 F, as shown in Fig. P6.177. There are two stops, a lower one at which V_{\min }=35  ft ^{3} and an upper one at V_{\max }=105  ft ^{3}. The piston is loaded with a mass and outside atmosphere such that it floats when the pressure is 75 lbf / in .^{2}. This setup is now cooled to 210 F by rejecting heat to the surroundings at 70 F. Find the total entropy generated in the process.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Water

State 1: Table F.7.2          v _{1}=5.3529   ft ^{3} / lbm , \quad u _{1}=1330.2   btu / lbm,

s _{1}=1.8381   Btu / lbm

 

m = V / v _{1}=105 / 5.353=19.615   lbm

State 2: 210 F and on line in P-v diagram.

Notice the following:        v _{ g }\left( P _{\text {float }}\right)=5.818   ft ^{3} / lbm , \quad v _{\text {bot }}= V _{\min } / m =1.7843

T _{\text {sat }}\left( P _{\text {float }}\right)=307.6   F , \quad T _{2}< T _{\text {sat }}\left( P _{\text {float }}\right) \Rightarrow V _{2}= V _{\min }

State 2:  210  F,  v _{2}= v _{ bot } \Rightarrow x _{2}=(1.7843-0.0167) / 27.796=0.06359

\begin{array}{l}u _{2}=178.1+0.06359 \times 898.9=235.26   btu / lbm ,  \\s _{2}=0.3091+0.06359 \times 1.4507=0.4014   btu / lbm  R\end{array}

Now we can do the work and then the heat transfer from the energy equation

{ }_{1} W _{2}=\int PdV = P _{\text {float }}\left( V _{2}- V _{1}\right)=75(35-105) \frac{144}{778}=-971.72   Btu

 

{ }_{1} Q _{2}= m \left( u _{2}- u _{1}\right)+{ }_{1} W _{2}=19.615(235.26-1330.2)-971.72=-22449   Btu

 

Take C.V. total out to where we have 70 F:

m \left( s _{2}- s _{1}\right)={ }_{1} Q _{2} / T _{0}+ S _{ gen } \Rightarrow

 

\begin{aligned}S _{ gen } &= m \left( s _{2}- s _{1}\right)-{ }_{1} Q _{2} / T _{0}=19.615(0.4014-1.8381)+\frac{22449}{529.67} \\&= 1 4 . 2 0   B t u / R \quad\left(=\Delta S _{\text {water }}+\Delta S _{\text {sur }}\right)\end{aligned}

 

 

1
2
F.7.2
F.7.2'
F.7.2''
F.7.2'''

Related Answered Questions