Question 7.2: Water is heated by flowing through a tube (constant surface ...

Water is heated by flowing through a tube (constant surface temperature T_{s} ) of diameter D = 1 cm. It can flow using a small power pump with a velocity of \left\langle u_{f}\right\rangle = 0.08 m/s or, using a larger power pump, with a velocity of \left\langle u_{f}\right\rangle = 0.5 m/s .
(a) Determine \dot{M}_{ f} for both velocities.
(b) Determine \left\langle Nu\right\rangle_{D} for both velocities.
(c) Determine the tube length required if the desired heat exchanger effectiveness \epsilon _{he} is 0.5, for both velocities.
Evaluate the water properties at T = 330 K, and neglect the entrance effect.

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The mass flow rate, for each velocity, is given by \dot{M}_{f}=\int_{A_{u}}{\rho _{f}u_{f}dA}=\rho _{f} \left\langle u\right\rangle _{f}A_{u}=A_{u}\dot{m}_{f} as

\dot{M}_{f}=A_{u}\rho _{f} \left\langle u_{f}\right\rangle 

where for a circular tube

A_{u}=\pi \frac{D^{2}}{4}

From Table, at T = 330 K, we have

\rho_{f} = 986.8 kg/m^{3}                                Table
c_{p,f} = 4,183 J/kg-K                               Table
ν_{f} = 505 × 10^{−9} m^{2}/s                         Table
k_{f} = 0.648 W/m-K                                 Table
Pr = 3.22                                   Table

For \left\langle u_{f} \right\rangle = 0.08 m/s

\dot{M}_{f}=\frac{\pi D^{2}}{4}\rho _{f}\left\langle u_{f}\right\rangle

 

=\frac{\pi× (10^{−2})^{2} (m)^{2}}{4}× 986.8(kg/m^{3} ) × 0.08(m/s) = 6.201 × 10^{−3} kg/s 

For \left\langle u_{f} \right\rangle = 0.5 m/s

\dot{M}_{f}=\frac{\pi× (10^{−2})^{2}}{4}× 986.4 × 0.5 = 3.875 × 10^{−2} kg/s

(b) The Nusselt number \left\langle Nu\right\rangle _{D} depends on the Reynolds number Re_{D}. For circular tubes, the correlations are listed in Table and Table. The Reynolds number is given by Re_{D}=\frac{\left\langle u_{f}\right\rangle D}{v_{f}}             ,Pr=\frac{v_{f}}{\alpha _{f}} , i.e.,

  Re_{D}=\frac{\left\langle u_{f}\right\rangle D}{v_{f}}

For \left\langle u_{f} \right\rangle = 0.08 m/s we have

  Re_{D}=\frac{0.08(m/s) × 10^{−2} (m)}{5.05 × 10^{−7} (m^{2}/s)}

 

  = 1,584 < Re_{D,t} = 2,300               laminar flow regime.

For \left\langle u_{f} \right\rangle = 0.5 m/s

Re_{D}=\frac{0.5(m/s) × 10^{−2} (m)}{5.05 × 10^{−7}(m^{2}/s)}

 

= 9,901 > Re_{D,t} = 2,300                          turbulent flow.

For \left\langle u_{f} \right\rangle = 0.08 m/s, and under uniform temperature Ts and fully developed conditions, we have from Table

Re_{D} = 1,584 < Re_{D,t} = 2,300,        \left\langle Nu\right\rangle _{D} = 3.66              Table

For \left\langle u_{f} \right\rangle = 0.5 m/s, and under fully developed conditions, we have from Table

Re_{D} = 9,901 > Re_{D,t} = 2,300,      \left\langle Nu\right\rangle _{D} = 0.023Re^{4/5}_{D} Pr^{n}               Table

Here we have T_{s} > \left\langle T_{f} \right\rangle and from Table , n = 0.4. Then

\left\langle Nu\right\rangle _{D} = 0.023 × (9,901)^{4/5} (3.22)^{0.4} = 57.73.

Note the larger Nusselt number associated with turbulent flows.

(c) The effectiveness for the heat exchange between a bounded fluid and its
constant-temperature bounding surface is given by \epsilon _{h,e}\equiv \frac{\left\langle T_{f}\right\rangle _{L}-\left\langle T_{f}\right\rangle _{0}}{T_{s}-\left\langle T_{f}\right\rangle _{0}} =\frac{\left\langle T_{f}\right\rangle _{0}-\left\langle T_{f}\right\rangle _{L}}{\left\langle T_{f}\right\rangle _{0}-T_{s}} =1-e^{-NTU} as

\epsilon _{h,e} =\frac{\left\langle T_{f}\right\rangle _{0}-\left\langle T_{f}\right\rangle _{L}}{\left\langle T_{f}\right\rangle _{0}-T_{s}} =1-e^{-NTU}

Here we are given \epsilon _{he} = 0.5, or

0.5 = 1 − e^{−NTU}

 

  e^{−NTU }= 0.5

NTU = − ln 0.5 = 0.6931.

From NTU\equiv \frac{R_{u,f}}{\left\langle R_{ku}\right\rangle _{D}} =\frac{1}{\left\langle R_{ku}\right\rangle_{D} (\dot{M}c_{p})_{f}}=\frac{A_{ku}\left\langle Nu\right\rangle _{D}k_{f}/D}{(\dot{M}c_{p})_{f}} , the definition of NTU is

NTU=\frac{1}{(\dot{M}c_{p})_{f}\left\langle R_{ku}\right\rangle_{D} }=\frac{A_{ku}\left\langle Nu\right\rangle _{D}k_{f}}{D(\dot{M}c_{p})_{f}}

where

  A_{ku} =πDL.

Then

NTU=\frac{\pi Lk_{f}\left\langle Nu\right\rangle _{D}}{\dot{M}_{f}c_{p.f}}

Solving for L, we have

L=\frac{NTU\dot{M}_{f}c_{p,f}}{\pi k_{f}\left\langle Nu\right\rangle _{D}}            required length.

For \left\langle u_{f} \right\rangle = 0.08 m/s

L=\frac{0.6931 × 4,183(J/kg-K) × 6.201 × 10^{−3} (kg/s)}{π × 0.648(W/m-K) × 3.66} = 2.413 m

For \left\langle u_{f} \right\rangle = 0.5 m/s

L=\frac{0.6931 × 4,183 × 3.875 × 10^{−2}}{π × 0.648 × 57.73} = 0.9560 m

Note the shorter length required for the turbulent flow.

23_4
7_2
7_3

Related Answered Questions