Question 1.34: Water is placed in a container that is open to the atmospher...

Water is placed in a container that is open to the atmosphere. (a) Determine the temperature and the vapor pressure at the boiling point at 0 ft above sea level. (b) Determine the temperature and the vapor pressure at the boiling point at 20,000 ft above sea level. (c) Discuss the results.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The boiling point of a liquid is defined as the temperature at which the vapor pressure of the liquid equals to the pressure above it. Thus, if the water is placed in a container that is open to the atmosphere, then the water will boil at the temperature at which the vapor pressure of the water is equal to the atmospheric pressure.

(a) The atmospheric pressure at 0 ft above sea level is read from Table A.1 in Appendix A as follows:

P_{atm }=14.6959 psia

Thus, the vapor pressure at the boiling point is equal to the atmospheric pressure as follows:

P_{\upsilon }=P_{atm }=14.6959 psia

Reading from Table A.2 in Appendix A, this magnitude of vapor pressure for water occurs at a temperature of 212^{\circ } F. Thus, the temperature of water at the boiling point is 212^{\circ } F.

(b) The atmospheric pressure at 20,000ft above sea level is read from Table A.1 in Appendix A as follows:

P_{atm }=6.7588psia

Thus, the vapor pressure at the boiling point is equal to the atmospheric pressure as follows:

P_{\upsilon } = P_{atm } =6.7588 psia

Reading from Table A.2 in Appendix A, this magnitude of vapor pressure for water occurs at a temperature of roughly 175^{\circ } F. Thus, the temperature of water at the boiling point is roughly 175^{\circ } F.

Therefore, because the atmospheric pressure decreases with an increase in altitude, the corresponding vapor pressure, P_{\upsilon } = P_{atm } at the boiling point also decreases. Furthermore, because the vapor pressure decreases with a decrease in temperature (graphically illustrated in Example Problem 1.33 above), the corresponding boiling point will also decrease.

Table A.1
Physical Properties for the International Civil Aviation Organization (ICAO) Standard Atmosphere as a Function of Elevation above Sea Level
Elevation
above Sea
Level
ft
Temperature (θ)
^{\circ } F
Absolute
Pressure (p)
psia
Density \left(\rho \right)
slug/ft^{3}
Specific
Weight \left(\gamma \right)
lb/ft^{3}
Absolute
(Dynamic)
Viscosity \left(\mu  \right)
10^{-6} lb – sec/ft^{2}
Kinematic
Viscosity (ν)
10^{-3} ft^{2}/sec
Speed of
Sound (c)
ft/sec
Acceleration
due to
Gravity (g)
ft/sec^{2}
0 59.000 14.69590 0.002376800 0.0764720 0.37372 0.15724 1116.45 32.174
5000 41.173 12.22830 0.002048100 0.0658640 0.36366 0.17756 1097.08 32.158
10.000 23.355 10.10830 0.001755500 0.0564240 0.35343 0.20133 1077.40 32.142
15.000 5.545 8.29700 0.001496100 0.0480680 0.34302 0.22928 1057.35 32.129
20.000 -12.255 6.75880 0.001267200 0.0406940 0.33244 0.26234 1039.94 32.113
25.000 -30.048 5.46070 0.001066300 0.0342240 0.32166 0.30167 1016.11 32.097
30.000 -47.048 4.37260 0.000890650 0.0285730 0.31069 0.34884 994.85 32.081
35.000 -65.607 3.46760 0.000738190 0.0236720 0.29952 0.40575 973.13 32.068
40.000 -69.700 2.73000 0.000587260 0.0188230 0.29691 0.50559 968.08 32.052
45.000 -69.700 2.14890 0.000462270 0.0148090 0.29691 0.64230 968.08 32.036
50.000 -69.700 1.69170 0.000363910 0.0116520 0.29691 0.81589 968.08 32.020
60.000 -69.700 1.04880 0.000225610 0.0072175 0.29691 1.31600 968.08 31.991
70.000 -67.425 0.65087 0.000139200 0.0044485 0.29836 2.14340 970.90 31.958
80.000 -61.976 0.40632 0.000085707 0.0027366 0.30182 3.52150 997.62 31.930
90.000 -56.535 0.25540 0.000053145 0.0016950 0.30525 5.74360 984.28 31.897
100.000 -51.099 0.16160 0.000033182 0.0010575 0.30865 9.30180 990.91 31.868
Elevation
above Sea
Level
Km
Temperature (θ)
^{\circ } C
Absolute
Pressure (p)
kPa abs
Density \left(\rho \right)
kg/m^{3}
Specific
Weight \left(\gamma \right)
N/m^{3}
Absolute
(Dynamic)
Viscosity \left(\mu  \right)
10^{-6} N – sec/m^{2}
Kinematic
Viscosity (ν)
10^{-6} m^{2}/sec
Speed of
Sound (c)
m/sec
Acceleration
due to
Gravity (g)
m/sec^{2}
0 15.000 101.325 1.22500 12.0131 17.894 14.607 340.294 9.80665
1 8.501 89.876 1.11170 10.8987 17.579 15.813 336.430 9.80360
2 2.004 79.501 1.00660 9.8652 17.260 17.147 332.530 9.80050
3 -4.500 70.121 0.90925 8.9083 16.938 18.628 328.580 9.78740
4 -10.984 61.66 0.81935 8.0250 16.612 20.275 324.590 9.79430
5 -17.474 54.048 0.73643 7.2105 16.282 22.110 320.550 9.79120
6 -23.693 47.217 0.66011 6.4613 15.949 24.161 316.450 9.78820
8 -36.935 35.651 0.52579 5.1433 15.271 29.044 308.110 9.78000
10 -49.898 26.499 0.41351 4.0424 14.577 35.251 299.530 9.77590
12 -56.500 19.399 0.31194 3.0476 14.216 45.574 295.070 9.76970
14 -56.500 14.17 0.22786 2.2247 14.216 62.391 295.070 9.76360
16 -56.500 10.352 0.16647 1.6243 14.216 85.397 295.070 9.75750
18 -56.500 7.565 0.12165 1.1862 14.216 116.860 295.070 9.75130
20 -56.500 5.529 0.08891 0.8664 14.216 159.890 295.070 9.74520
25 -51.598 2.549 0.04008 0.3900 14.484 361.350 298.390 9.73000
30 -46.641 1.197 0.01841 0.1788 14.753 801.340 301.710 7.71470

 

Table A.2
Physical Properties for Water at Standard Sea-Level Atmospheric Pressure as a Function of Temperature
Temperature
(θ)
^{\circ } F
Density
(ρ)
slug/ft^{3}
Specific
Weight
(γ)
Ib/ft^{3}
Absolute
(Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{3}
Kinematic
Viscosity
(ν)
10^{-6} ft^{2}/sec
Surface
Tension
(σ)
lb=ft
Vapor
Pressure
(\rho _{\nu } )
psia
Bulk
Modulus
of Elasticity
(E_{\upsilon } )
psi
32 1.940 62.42 37.46 19.31 0.00518 0.0885 293.000
40 1.940 62.43 32.29 16.64 0.00514 0.1220 294.000
50 1.940 62.41 27.35 14.10 0.00509 0.1780 305.000
60 1.938 62.37 23.59 12.17 0.00504 0.2560 311.000
70 1.936 62.30 20.50 10.59 0.00498 0.3630 320.000
80 1.934 62.22 17.99 9.30 0.00492 0.5070 322.000
90 1.931 62.11 15.95 8.26 0.00486 0.6980 323.000
100 1.927 62.00 14.24 7.39 0.00480 0.9490 327.000
110 1.923 61.86 12.84 6.67 0.00473 1.2750 331.000
120 1.918 61.71 11.68 6.09 0.00467 1.6920 333.333
130 1.913 61.55 10.69 5.58 0.00460 2.2200 334.000
140 1.908 61.38 9.81 5.14 0.00454 2.8900 330.000
150 1.902 61.20 9.05 4.76 0.00447 3.7200 328.000
160 1.896 61.00 8.38 4.42 0.00441 4.7400 326.000
170 1.890 60.80 7.80 4.13 0.00434 5.9900 322.000
180 1.883 60.58 8.26 3.85 0.00427 7.5100 318.000
190 1.876 60.36 6.78 3.62 0.00420 9.3400 313.000
200 1.868 60.12 6.37 3.41 0.00413 11.5200 308.000
212 1.860 59.83 5.93 3.19 0.00404 14.6900 300.000
^{\circ } C kg/m^{3} KN/m^{3} N-sec/m^{2} 10^{-6} m^{2} /sec N/m KN/m^{2}  abs 10^{6} KN/m^{2}
0 999.8 9.805 0.001781 1.785 0.0756 0.6110 2.02
5 1000.0 9.807 0.001518 1.519 0.0749 0.872 2.06
10 999.7 9.804 0.001307 1.306 0.0742 1.230 2.10
15 999.1 9.798 0.001139 1.139 0.0735 1.710 2.14
20 998.2 9.789 0.001002 1.003 0.0725 2.340 2.18
25 997.0 9.777 0.000890 0.893 0.0720 3.170 2.22
30 995.7 9.765 0.000798 0.800 0.0712 4.240 2.25
40 992.2 9.731 0.000653 0.659 0.0696 7.380 2.28
50 988.0 9.690 0.000547 0.553 0.0697 12.330 2.29
60 983.2 9.642 0.000466 0.474 0.0662 19.920 2.28
70 977.8 9.589 0.000404 0.413 0.0644 31.160 2.25
80 971.8 9.530 0.000356 0.364 0.0626 47.340 2.20
90 965.3 9.467 0.000315 0.326 0.0608 70.100 2.14
100 958.4 9.399 0.000282 0.294 0.0589 101.330 2.07

Related Answered Questions