Question 11.184E: Weighing of masses gives a mixture at 80 F, 35 lbf/in.^2 wit...

Weighing of masses gives a mixture at 80 F, 35 lbf / in .^{2} with 1 lbm O _{2}, 3 lbm N _{2} and 1 lbm CH _{4}. Find the partial pressures of each component, the mixture specific volume (mass basis), mixture molecular weight and the total volume.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. 11.4:          y _{ i }=\left( m _{ i } / M _{ i }\right) / \sum m _{ j } / M _{ j }

n _{ tot }=\sum m _{ j } / M _{ j }=(1 / 31.999)+(3 / 28.013)+(1 / 16.04)

= 0.031251 + 0.107093 + 0.062344 = 0.200688

\begin{aligned}& y _{ O 2}=0.031251 / 0.200688=0.1557, \quad y _{ N 2}=0.107093 / 0.200688=0.5336, \\& y _{ CH 4}=0.062344 / 0.200688=0.3107\end{aligned}

From Eq.11.10:

\begin{aligned}&P_{O 2}=y_{O 2} P_{t o t}=0.1557 \times 35=5.45   lbf / \text { in. }^{2} \\&P_{N 2}=y_{N 2} P_{t o t}=0.5336 \times 35=18.676   lbf / \text { in. }^{2} \\&P_{C H 4}=y_{C H 4} P_{t o t}=0.3107 \times 35=10.875   lbf / \text { in. }^{2}\end{aligned} \begin{aligned}& V _{\text {tot }}= n _{\text {tot }} \overline{ R } T / P =0.200688 \times 1545 \times 539.7 /(35 \times 144)= 3 3 . 2   ft ^{3} \\& v = V _{\text {tot }} / m _{\text {tot }}=33.2 /(1+3+1)= 6 . 6 4 ~ f t ^{ 3 } / lbm\end{aligned}

From Eq.11.5:

M _{\operatorname{mix}}=\sum y _{j} M _{ j }= m _{ tot } / n _{ tot }=5 / 0.200688= 2 4 . 9 1 4   lbm / lbmol

…………………………………………

Eq.11.4 : y_{i}=\frac{n_{i}}{n_{ tot }}=\frac{m_{i} / M_{i}}{\sum m_{j} / M_{j}}=\frac{m_{i} /\left(M_{i} m_{ tot }\right)}{\sum m_{j} /\left(M_{j} m_{ tot }\right)}=\frac{c_{i} / M_{i}}{\sum c_{j} / M_{j}}

Eq.11.10 :  P_{A}=y_{A}  P, \quad P_{B}=y_{B}  P

Eq.11.5: M_{\operatorname{mix}}=\frac{m_{ tot }}{n_{ tot }}=\frac{\sum n_{i} M_{i}}{n_{ tot }}=\sum y_{i} M_{i}

Related Answered Questions