Question 6.28: When an open circuit and short circuit tests were performed ...

When an open circuit and short circuit tests were performed on a three-phase, star-connected, 1000 kVA , 2000 V , 50 Hz alternator, the following results were obtained:

Field current (in ampere):

10  15  20  25  30  35  40  45  50

O.C. terminal voltage (in volt):

800  1143  1500  1760  2000  2173  2350  2476  2600

S.C. armature current (in ampere):

–  –  200  250  300  –  –  –  –

The armature effective resistance per phase is 0.2 \Omega .  Draw the characteristic curves and determine the full-load percentage regulation at (a) 0.8 power factor lagging, (b) 0.8 power factor leading. Also draw the phasor diagrams.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The O C C and S C C are shown in Fig. 6.63. The open circuit phase voltage in volt are

 

\frac{800}{\sqrt{3}}, \frac{1143}{\sqrt{3}}, \frac{1500}{\sqrt{3}}, \frac{1760}{\sqrt{3}}, \frac{2000}{\sqrt{3}}, \frac{2173}{\sqrt{3}}, \frac{2350}{\sqrt{3}}, \frac{2476}{\sqrt{3}}, \frac{2600}{\sqrt{3}}

 

or =462,660,866,1016,1155,\\1255,1357,1430,1501

 

Full-load phase voltage

 

V=\frac{2000}{\sqrt{3}}=1155 V

 

Full load line current

 

\quad I_{L}  =\frac{k V A \times 1000}{\sqrt{3} \times V_{L}} \\ =\frac{1000 \times 1000}{\sqrt{3} \times 2000}=288.7 A

 

Full-load phase current,

 

\quad I=I_{L}=288.7

 

(a) At power factor 0.8 lagging (neglecting leakage reactance since not given)

 

E =\bar{V}+\bar{I} \bar{R}=1155+\left(288.7 \angle-\cos ^{-1} 0.8\right) \times 0.2

 

=1155+(57.74 \times 0.8-j 57.74 \times 0.6)

 

=1155+46.2-j 34.64

 

=1201.2-j 34.64=1201.7 \angle-1.65^{\circ} V

 

Here

 

\delta=-1.65^{\circ} V

 

From the O C C, the field current required to produce the voltage of 1201.7 V is 32 A. Therefore o a=I_{f_{1}}=32 A. This current leads the voltage vector O E by 90^{\circ}  or leads the terminal voltage vector O V by \left(90-\delta=90-1.65^{\circ}=88.35^{\circ}\right) 88.35^{\circ}.

 

\bar{I}_{f_{1}}=I_{f_{1}} \angle 90^{\circ}-1.65^{\circ}=32 \angle 88.35^{\circ}=(0.92+i 31.98) A

 

From the S C C, the field current required to produce full-load current of 288.7 A is 29 A. Therefore o b=I_{f_{2}}=29 A .   For \cos \phi=0.8, \phi=36.87^{\circ}

 

From the phasor diagram shown in Fig. 6.64.

 

\begin{aligned}\bar{I}_{f_{2}} &=I_{f_{2}} \angle 180^{\circ}-\phi=29 \angle 180^{\circ}-36.87^{\circ} \\&=28^{\circ} \angle 143.13^{\circ} A =-23.2+j 17.4 \\\bar{I}_{f} &=\bar{I}_{f_{2}}+\bar{I}_{f_{1}}=-23.2+j 17.4+0.92+j 31.98 \\&=-22.28+j 49.38=54.18 \angle 114.3^{\circ} A\end{aligned}

 

From the O C C, the open circuit phase voltage corresponding to the field current of 54.18 A is 1555 V

 

\therefore  Percentage voltage regulation =\frac{E_{o}-V}{V} \times 100=\frac{1555-1155}{1155} \times 100= 3 4 . 6 3 \%

 

(b) At power factor 0.8 leading

 

\bar{E} =\bar{V}+\bar{I} R

 

=1155+\left(288.7 \angle+\cos ^{-1} 0.8\right) \times 0.2

 

=1155+46.2+j 34.64

 

=1201.2+j 34.64=1201.7 \angle+1.65^{\circ} V

 

From the phasor diagram shown in Fig. 6.65.

 

\begin{aligned}I_{f_{1}} &=I_{f_{1}} \angle 90^{\circ}+\delta=32 \angle 90^{\circ}+1.65=32 \angle 91.65^{\circ} A \\&=-0.92+j 31.98 A \\I_{f_{2}} &=I_{f_{2}} \angle 180^{\circ}+\phi \\&=29 \angle 180^{\circ}+36.87^{\circ}=29 \angle 216.87^{\circ} A =-23.2-j 17.4 A \\\bar{I}_{f} &=\bar{I}_{f_{2}}+\bar{I}_{f_{1}}=-0.92+j 31.98-23.2-j 17.4 \\&=-24.12+j 14.58 A =28.18 \angle 31.15^{\circ} A\end{aligned}

 

\begin{array}{l}\text { From the O.C.C., the open-circuit phase voltage corresponding to a field current of } 28.18 A \text { is }\\1120 V \text { . }\\\text { Percentage voltage regulation }=\frac{E_{o}-V}{V} \times 100=\frac{1120-1155}{1155} \times 100=-3.03 \% \end{array}
6.28
6.28a
6.28aa

Related Answered Questions