Question 9.5.1: Which of the following matrices are Hermitian? A = [2 3 - i ...

Which of the following matrices are Hermitian?

A = \left [ \begin{matrix} 2 & 3 - i \\ 3 + i & 4 \end{matrix} \right ],          B = \left [ \begin{matrix} 1 & 2i \\ -2i & 3 - i \end{matrix} \right ],          C = \left [ \begin{matrix} 0 & i & i \\ -i & 0 & i \\ -i & i & 0 \end{matrix} \right ]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have A^∗ = \left [ \begin{matrix} 2 & 3 – i \\ 3 + i & 4 \end{matrix} \right ] = A, so A is Hermitian.

B^∗ = \left [ \begin{matrix} 1 & 2i \\ -2i & 3 + i \end{matrix} \right ] \neq B, so B is not Hermitian.

C^∗ = \left [ \begin{matrix} 0 & i & i \\ -i & 0 & -i \\ -i & -i & 0 \end{matrix} \right ] \neq C, so C is not Hermitian.

Related Answered Questions