Why can’t you do integration-by-parts directly on the middle expression in Equation 1.29—pull the time derivative over onto x, note that ∂ x /∂ t = 0, and conclude that d\left\langle x\right\rangle /dt = 0 ?.
\frac{d\left\langle x\right\rangle }{dt} = \int{x \frac{\partial}{\partial t} \left|\Psi \right|^2 } dx = \frac{i \hbar }{2m} \int{x \frac{\partial}{\partial x}\biggl(\Psi ^*\frac{\partial \Psi }{\partial x} - \frac{\partial \Psi ^*}{\partial x} \Psi \biggr) } dx (1.29).