Work out the coupling of the isospins of a pion–nucleon system and infer the various states of this system.
Work out the coupling of the isospins of a pion–nucleon system and infer the various states of this system.
Since the isospin of a pion meson is 1 and that of a nucleon is \frac {1}{2}, the total isospin of a pion– nucleon system can be obtained by coupling the isospins t_{1} =1 and t_{2} =\frac{1}{2}. The various values of the total isospin lie in the range \left|t_{1} -t_{2} \right| <T<t_{1} +t_{2} ; hence they are given by T=\frac{3}{2},\frac{1}{2}.
The coupling of the isospins t_{1} =1 and t_{2} = \frac{1}{2} is analogous to the addition of an orbital angular momentum l = 1 and a spin \frac {1}{2}; the expressions pertaining to this coupling are listed in (7.206) to (7.211).
\left|\frac{3}{2},\frac{3}{2}\right\rangle =\left|1,\frac{1}{2};1, \frac{1}{2}\right\rangle , (7.206)
\left|\frac{3}{2},\frac{1}{2}\right\rangle =\sqrt{\frac{2}{3} } \left|1,\frac{1}{2};0,\frac{1}{2}\right\rangle +\frac{1}{\sqrt{3} } \left |1,\frac{1}{2};1,-\frac{1}{2}\right\rangle , (7.207)
\left|\frac{3}{2},-\frac{1}{2}\right\rangle =\frac{1}{\sqrt{3} }\left|1,\frac{1}{2};-1,\frac{1}{2}\right\rangle + \sqrt{\frac{2}{3} }\left |1,\frac{1}{2};0,-\frac{1}{2}\right\rangle , (7.208)
\left|\frac{3}{2},-\frac{3}{2}\right\rangle =\left|1,\frac{1}{2}; -1,-\frac{1}{2}\right\rangle . (7.209)
\left|\frac{1}{2},\frac{1}{2}\right\rangle =\sqrt{\frac{2}{3} } \left|1,\frac{1}{2};1,-\frac{1}{2}\right\rangle -\frac{1}{\sqrt{3} } \left |1,\frac{1}{2};0,\frac{1}{2}\right\rangle , (7.210)
\left|\frac{1}{2},-\frac{1}{2}\right\rangle =\frac{1}{\sqrt{3} } \left|1,\frac{1}{2};0,-\frac{1}{2}\right\rangle – \sqrt{\frac{2}{3} }\left |1,\frac{1}{2};-1,\frac{1}{2}\right\rangle . (7.211)
Note that there are three different π-mesons:
|1,1 〉=|\pi ^{+} 〉, |1,0 〉=|\pi ^{0} 〉, |1,-1 〉=|\pi ^{-} 〉, (7.388)
and two nucleons, a proton and a neutron:
\left|\frac{1}{2},\frac{1}{2}\right\rangle=|p 〉, \left|\frac{1}{2},-\frac{1}{2}\right\rangle =|n 〉. (7.289)
By analogy with (7.206) to (7.211) we can write the states corresponding to T=\frac{3}{2} as
\left|\frac{3}{2},\frac{3}{2}\right\rangle=|1,1 〉\left|\frac{1}{2}, \frac{1}{2}\right\rangle=|\pi ^{+} 〉|p 〉 , (7.390)
\left|\frac{3}{2},\frac{1}{2}\right\rangle =\sqrt{\frac{2}{3} } |1,0 〉\left|\frac{1}{2},\frac{1}{2}\right\rangle+\frac{1}{\sqrt{3} }|1,1 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3} }|\pi ^{0} 〉|p 〉+\frac{1}{\sqrt{3} }|\pi ^{+} 〉 |n 〉 , (7.391)
\left|\frac{3}{2},-\frac{1}{2}\right\rangle =\frac{1}{\sqrt{3} } |1,-1 〉\left|\frac{1}{2},\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3} }|1,0 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3} }|\pi ^{-} 〉|p 〉+\sqrt{\frac{2}{3} }|\pi ^{0} 〉|n 〉 , (7.392)
\left|\frac{3}{2},-\frac{3}{2}\right\rangle=|1,-1 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|\pi ^{-} 〉|n 〉 , (7.393)
and those corresponding to T=\frac{1}{2} as
\left|\frac{1}{2},\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3} }|1,1 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{3} }|1,0 〉\left |\frac{1}{2},\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3} }|\pi ^{+} 〉|n 〉-\frac{1}{\sqrt{3} }|\pi ^{0} 〉 |p 〉 , (7.394)
\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3} } |1,0 〉\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3} }|1,-1 〉\left|\frac{1}{2},\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3} }|\pi ^{0} 〉|n 〉-\sqrt{\frac{2}{3} } |\pi ^{-} 〉|p 〉 . (7.395)