Write the following initial value problem as a first-order system:
t^{3} x^{\prime \prime \prime}+4 t^{2} x^{\prime \prime}-8 t x^{\prime}+8 x=0, \quad x(2)=3, \quad x^{\prime}(2)=-6, \quad x^{\prime \prime}(2)=14.
Write the following initial value problem as a first-order system:
t^{3} x^{\prime \prime \prime}+4 t^{2} x^{\prime \prime}-8 t x^{\prime}+8 x=0, \quad x(2)=3, \quad x^{\prime}(2)=-6, \quad x^{\prime \prime}(2)=14.
Defining x_{1}=x, x_{2}=x^{\prime}, x_{3}=x^{\prime \prime}, we obtain the system
\begin{aligned}&x_{1}{ }^{\prime}=x_{2}, \\&x_{2}{ }^{\prime}=x_{3}, \\&x_{3}{ }^{\prime}=\frac{-8}{t^{3}} x_{1}+\frac{8}{t^{2}} x_{2}-\frac{4}{t} x_{3},\end{aligned}with the initial condition x_{1}(2)=3, x_{2}(2)=-6, x_{3}(2)=14.