Question 2.1.3: {Xn}^=∞ n=-∞ is an independent and identically distributed (...

\left\{X_{n}\right\}_{n=-\infty}^{n=\infty} is an independent and identically distributed (i.i.d) random process with X_{n} equally likely to be +1 or -1 \cdot\left\{Y_{n}\right\}_{n=-\infty}^{n=\infty} is another random process obtained as Y_{n}=X_{n}+0.5 X_{n-1}. The autocorrelation function of \left\{Y_{n}\right\}_{n=-\infty}^{n=\infty} , denoted by R_{Y}[k], is

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{gathered}R_{y}(k)=R_{y}(n, n+k) \\=E[Y[n] \cdot Y[n+k)] \\Y[n]=X[n]+0.5 x[n-1] \\R_{y}(k)=E[(X[n]+0.5 X[n-1]) \cdot(x[n+k] \\+0.5 x[n+k-1])] \\=E[x[n] x[n+k]+0.5 x[n-1] x[n+k] \\+0.5 x[n] x[n+k-1]+0.25 x[n-1] x[n+k-1]\end{gathered}

 

\begin{aligned}&=R_{x}(k)+0.5 R_{x}[k+1]+0.5 R_{x}(k-1)+0.25 R_{x}(k) \\&R_{y}(k)=1.25 R_{x}(k)+0.5 R_{x}(k+1)+0.5 R_{x}(k-1) \\&R_{x}(k)=E[x[n] x[n+k]]\end{aligned}

for k=0 E\left[x^{2}[n]\right]=I^{2} \frac{1}{2}+(-1)^{2} \frac{1}{2}=1

For k 0 

\begin{aligned}&R_{x}(k)=E[x[n]] \cdot E[X(n+k)]=0 \\&\operatorname{So} R_{y}(k)=1.25 R_{x}(k)+0.5 R_{x}(k-1)+0.5 R_{x}(k+1) \end{aligned} .

\begin{array}{l}\text { For } R_{y}(0)=1.25 R_{x}(0)+0.5 \nearrow R_{x}^{\circ}(-1)+0.5 \nearrow R_{x}^{\circ}(+1) \\\quad=1.25 \\\begin{aligned}R_{y}(1) &=1.25 \nearrow \hat{R}_{x}^{\circ}(1)+0.5 R_{x}(0)+0.5 \nearrow R_{x}^{\circ}(+2) \\&=0.5\end{aligned} \\\begin{aligned}R_{y}(-1) &=1.25 \nearrow \vec{R}_{x}^{\circ}(-1)+0.5 \nearrow R_{x}^{\circ}(-2)+0.5 R_{x}(0) \\ &=0.5\end{aligned} \\ R_{y}(2)=1.25 \nearrow R_{x}^{\circ}(2)=0.5 \nearrow \hat{R}_{x}^{\circ}(1)+0.5 \nearrow R_{x}^{\circ}(3) \end{array}

 

So all values of R_{y}(k) are zero except at k =0, 1 and –1.
So

Hence, the correct option is (B).

2.3

Related Answered Questions