Question 7.15: You are a project engineer. You find a tank in your plant sa...

You are a project engineer. You find a tank in your plant salvage yard which has a volume of 50 L. The specs on the tank indicate that it will burst at 30 bar (absolute).
Company policy is to never exceed half the bursting pressure of any tank. You would like to use the tank as a surge tank which will hold propane. The maximum amount of material to be stored will be 975 grams and the maximum temperature will be 425 K.
Will you be in violation of company policy if you use this tank? Perform calculations using each of the following methods, and discuss the results:

A) the ideal gas law
B) the Lee-Kesler charts
C) the Virial equation

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Because there is a volume of 50 L, maximum mass of 975 g, and propane has a molecular weight MW=44.09 g/mol, the molar volume of propane in this process can be calculated.

\underline{\mathrm{V}}=(50 \mathrm{~L})\left(\frac{\mathrm{m}^3}{1000 \mathrm{~L}}\right)\left(\frac{100^3 \mathrm{~cm}^3}{\mathrm{~m}^3}\right)\left(\frac{1}{975 \mathrm{~g}}\right)\left(\frac{44.09 \mathrm{~g}}{\mathrm{~mol}}\right)=2261 \frac{\mathrm{cm}^3}{\mathrm{~mol}}

A) The ideal gas law can be rearranged to solve for the maximum pressure of the tank under these specifications.

\mathrm{P} \underline{\mathrm{V}}=\mathrm{RT}

\mathrm{P}=\frac{\mathrm{RT}}{\underline{\mathrm{V}}}

Solve for pressure using the maximum temperature of 425 K and the previously calculated molar volume

P=\frac{\left[(425 \mathrm{~K})\left(83.14 \frac{\mathrm{cm}^3 \mathrm{bar}}{\mathrm{m} \mathrm{ol} \,\mathrm{K}}\right)\right]}{2261 \frac{\mathrm{cm}^3}{\mathrm{~mol}}}

\bf P=15.63  \,bar

Violates the policy of not exceeding half of the burst pressure of 30 bar

B) from Appendix C:

for propane \rightarrow \mathrm{T}_{\mathrm{c}}=369.83 \mathrm{~K} ; \mathrm{P}_{\mathrm{c}}=42.48~ \mathrm{bar} ; \omega=0.152

Using \rm T_c and \rm P_c, calculate the reduced temperature and pressure at 425 K and 30 bar

\begin{aligned}& \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \\& \mathrm{T}_{\mathrm{r}}=\frac{425 \mathrm{~K}}{369.83 \mathrm{~K}}=1.15 \\& \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}\end{aligned}

\mathrm{P}_{\mathrm{r}}=\frac{30 \,\mathrm{bar}}{42.48 \,\mathrm{bar}}=0.71

From the Lee Kesler charts, find z^0 and z^1 using the reduced temperature and pressure calculated in the previous step

For propane at \mathrm{T}_{\mathrm{r}}=1.15 and \mathrm{P}_{\mathrm{r}}=0.71 \rightarrow \mathrm{z}^0=0.8 ; \mathrm{z}^1=0.025

Calculate z

\begin{aligned}& \mathrm{z}=\mathrm{z}^0+\omega \mathrm{z}^1 \\& \mathrm{z}=0.8+(0.152)(0.025)=0.8038\end{aligned}

Solve for molar volume using z

\begin{aligned}& \mathrm{PV}=\mathrm{zRT} \\& \mathrm{P}=\frac{\mathrm{zRT}}{\underline{\mathrm{V}}}\end{aligned}

\begin{gathered}P=\frac{(0.8038)\left(83.14 \frac{\mathrm{cm}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)(425 \mathrm{~K})}{2261 \frac{\mathrm{cm}^3}{\mathrm{~mol}}} \\\mathrm{P}=12.56 \,\mathrm{bar}\end{gathered}

Not in violation because the pressure is less than half the busting pressure

C) The Virial Equation is expressed in terms of z:

\begin{aligned}& \mathrm{z}=1+\left(\frac{\mathrm{BP}_{\mathrm{c}}}{\mathrm{RT}_{\mathrm{c}}}\right)\left(\frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}\right) \\& \left(\frac{\mathrm{BP}_{\mathrm{c}}}{\mathrm{RT}_{\mathrm{c}}}\right)=\mathrm{B}^0+\omega \mathrm{B}^1\end{aligned}

Use the reduced temperature found in part b

\begin{aligned}& \mathrm{B}^0=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \\& \mathrm{~B}^0=0.083-\frac{0.422}{1.15^{1.6}}=-0.254 \\& \mathrm{~B}^1=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \\& \mathrm{~B}^1=0.139-\frac{0.172}{1.15^{4.2}}=0.0434 \\& \left(\frac{\mathrm{BP}_{\mathrm{c}}}{\mathrm{RT}_{\mathrm{c}}}\right)=-0.254+(0.152)(0.0434)=-0.247\end{aligned}

Rewrite the Virial Equation in terms of pressure

\mathrm{z}=\frac{\mathrm{P}\underline{\mathrm{V}}}{\mathrm{RT}}=1+\left(\frac{\mathrm{BP}_{\mathrm{c}}}{\mathrm{RT}_{\mathrm{c}}}\right)\left(\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}} \mathrm{T}_{\mathrm{c}}}\right)

Solve for pressure using all known values.

\frac{\left(2261 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right) \mathrm{P}}{(425 \mathrm{~K})\left(83.14 \frac{\mathrm{cm}^3 \mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right)}=1-0.247\left(\frac{\mathrm{P}}{(42.48 \,\mathrm{bar})(369.83 \mathrm{~K})}\right)

P = 14.48 < 30 bar
Not in violation because the pressure in the tank does not exceed half the bursting pressure

Related Answered Questions