Question 7.18: You are designing a process in which toluene is used as a so...

You are designing a process in which toluene is used as a solvent. In order to size process equipment, you need to know the properties at several conditions. Use the Peng Robinson equation to estimate the following quantities:

A) The molar volume at the critical point
B) The molar volume in the liquid phase at T=300 K and P=1 bar
C) The molar volume in the vapor phase at T=500 K and P=3 bar
D) The change in molar enthalpy when toluene is heated and compressed from T=300 K and P=1 bar to T=500 K and P=3 bar

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) According to Appendix C, the critical properties of toluene are \rm T_c=591.75 K, \rm P_c=41.08 bar and ω=0.264. The Peng-Robinson equation is:

P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}(\underline{V}+b)+b(\underline{V}-b)}

The expressions in Section 7.2.7 are used to find a and b.When \rm  T=T_c, the values are a=2.35 x 10^7\,\rm bar~cm^6/mol² and b=93.2 cm³/mol.

When \rm T=T_c and \rm P=P_c, the solution is V=385 cm³/mol.

B) When P=1 bar and T=300 K, a=4.01 x 10^7\,\rm bar~cm^6/mol²

There are solutions for V at 1404 cm³/mol and ~23,320 cm³/mol, but the smallest solution is the one corresponding to the liquid phase. This is V=107.4 cm³/mol.

C) When P=3 bar and T=500 K, the three solutions for V are 150.8, 414 and 13,200 cm³/mol. The largest is the vapor solution.

D) The change in molar enthalpy determined using residual properties is:

\underline{H}_2-\underline{H}_1=\left(\underline{H}_2-\underline{H}_2^{i g}\right)+\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)-\left(\underline{H}_1-\underline{H}_1^{i g}\right)

We know from the problem statement that state (1) is a liquid and state (2) is a vapor, and we will compute the residual molar enthalpy for each.

The expression for residual molar enthalpy as given in Section 7.2.8 is:

\frac{\underline{H}^R}{R T}=(Z-1)-\left\{\left(\frac{A}{B \sqrt{8}}\right)\left(1+\frac{\kappa \sqrt{T_r}}{\sqrt{\alpha}}\right) \ln \left[\frac{Z+(1+\sqrt{2}) B}{Z+(1-\sqrt{2}) B}\right]\right\}

With

\begin{gathered}A=\frac{a P}{R^2 T^2} \\B=\frac{b P}{R T}\end{gathered}

Start with the vapor (2) at 500 K and 3 bar. Appendix C gives \rm T_c=591.75 K, \rm P_c=41.08 bar and ω= 0.264. Use the method summarized in Section 7.2.7 to find a and b. The results are:

\begin{aligned}& \kappa=0.763 \\& \mathrm{~T}_{\mathrm{r}}=0.845 \\& \alpha=1.127 \\& \mathrm{a}_{\mathrm{c}}=2.69 \times 10^7 \mathrm{bar~cm}^6 / \mathrm{mol}^2 \\& \mathrm{a}=3.036 \times 10^7 \mathrm{bar~cm} / \mathrm{mol}^2 \\& \mathrm{~b}=93.17 \mathrm{~cm}^3 / \mathrm{mol}\end{aligned}

Inserting a and b to determine A and B at this temperature gives:

\begin{gathered}A=\frac{\left(3.036 \times 10^7 \frac{\mathrm{bar~cm}^6}{\mathrm{~mol}^2}\right)(3 \mathrm{~bar})}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{mol~K}}\right)^2(500 \mathrm{~K})^2}=0.0527 \\B=\frac{\left(93.17 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)(3 \mathrm{~bar})}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{mol~K}}\right)(500 \mathrm{~K})}=0.00672\end{gathered}

There are three solutions to the Peng-Robinson equation at T=500 K and P=3 bar. The largest, determined using the Solver feature in Microsoft EXCEL, corresponds to the vapor phase and this is V=13,200 cm³/mol. At this condition:

Z=\frac{P \underline{V}}{R T}=\frac{(3 \text { bar })\left(13,200 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{mol~K}}\right)(500 \mathrm{~K})}=0.953

Plugging all of the above results into the equation:

\frac{\underline{H}^R}{R T}=(Z-1)-\left\{\left(\frac{A}{B \sqrt{8}}\right)\left(1+\frac{\kappa \sqrt{T_r}}{\sqrt{\alpha}}\right) \ln \left[\frac{Z+(1+\sqrt{2}) B}{Z+(1-\sqrt{2}) B}\right]\right\}

Gives

\begin{gathered}\frac{\mathrm{H}_2^R}{R T}=-0.139 \\\underline{H}_2^R=-5767 \frac{\text { bar~cm}^3}{\mathrm{~mol}}=-577 \frac{\mathrm{J}}{\mathrm{mol}}\end{gathered}

Now we repeat the calculation for the initial state (1), 300 K and 1 bar. The results are:

\begin{aligned}& \kappa=0.763 \\& T_r=0.507 \\& \alpha=1.488 \\& a_c=2.69 \times 10^7 b a r~ c m^6 / \mathrm{mol}^2 \\& a=4.01 \times 10^7 b a r~c m^6 / \mathrm{mol}^2 \\& b=93.17 \mathrm{~cm}^3 / \mathrm{mol}\end{aligned}

Inserting a and b to determine A and B at this temperature gives:

\begin{gathered}A=\frac{\left(4.01 \times 10^7 \frac{\mathrm{bar~cm}^6}{\mathrm{~mol}^2}\right)(1 \,\mathrm{bar})}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{mol~K}}\right)^2(300 \mathrm{~K})^2}=0.0644 \\B=\frac{\left(93.17 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)(1 \,\mathrm{bar})}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{mol~K}}\right)(300 \mathrm{~K})}=0.00374\end{gathered}

Again there are three solutions to the Peng-Robinson equation at T=300 K and P=1 bar. This time we are concerned with the smallest of the three, the liquid solution, which is V=107.4 cm³/mol. At this condition:

Z=\frac{P \underline{V}}{R T}=\frac{(1 \,\mathrm{bar})\left(107.4 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{mol~K}}\right)(300 \mathrm{~K})}=0.00430

Plugging all of the above results into the equation:

\frac{\underline{H}^R}{R T}=(Z-1)-\left\{\left(\frac{A}{B \sqrt{8}}\right)\left(1+\frac{\kappa \sqrt{T_r}}{\sqrt{\alpha}}\right) \ln \left[\frac{Z+(1+\sqrt{2}) B}{Z+(1-\sqrt{2}) B}\right]\right\}

Gives:

\begin{gathered}\frac{\underline{H}_1^R}{R T}=-14.89 \\\underline{H}_1^R=-371,350 \frac{\text { bar~cm}^3}{\mathrm{~mol}}=-37,135 \frac{\mathrm{J}}{\mathrm{mol}}\end{gathered}

This leaves the ideal gas enthalpy change:

\underline{H}_2^{i g}-\underline{H}_1^{i g}=\int_{T_1=300 K}^{T_2=500 K} C_P^*

Using C_P^* from Appendix D:

\underline{H}_2^{i g}-\underline{H}_1^{i g}=27,656 \frac{\mathrm{J}}{\mathrm{mol}}

Returning to the enthalpy equation

\begin{gathered}\underline{H}_2-\underline{H}_1=\left(\underline{H}_2-\underline{H}_2^{i g}\right)+\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)-\left(\underline{H}_1-\underline{H}_1^{i g}\right)\\\underline{H_2}-\underline{H}_1=\left(-577 \frac{\mathrm{J}}{\mathrm{mol}}\right)+\left(27,656 \frac{\mathrm{J}}{\mathrm{mol}}\right)-\left(-37,135 \frac{\mathrm{J}}{\mathrm{mol}}\right) \\ \underline{\mathrm{H}_2}-\underline{H}_1=64,214 \frac{\mathrm{J}}{\mathrm{mol}}=\bf 64,200 \frac{J}{m o l}\end{gathered}

Related Answered Questions