Beam Deflections and Slopes
from Mechanics of Materials [1012468]
Table F
Beam and Loading Elastic Curve Maximum Deflection Slope at End Equation of Elastic Curve
PL33EI -\frac{PL^3}{3EI} PL22EI -\frac{PL^2}{2EI} y=P6EI(x33Lx2) y= \frac{P}{6EI}(x^3-3Lx^2)
wL48EI -\frac{wL^4}{8EI} wL36EI -\frac{wL^3}{6EI} y=w24EI(x44Lx3+6L2x2) y= \frac{w}{24EI}(x^4-4Lx^3+6L^2x^2)
ML22EI -\frac{ML^2}{2EI} MLEI -\frac{ML}{EI} y=M2EIx2 y= -\frac{M}{2EI}x^2
PL348EI -\frac{PL^3}{48EI} ±PL216EI \pm \frac{PL^2}{16EI} For x12L: For  x\leq \frac{1}{2}L:

y=P48EI(4x33L2x) y = \frac{P}{48EI}(4x^3-3L^2x)

For a > b:

Pb(L2b2)3/293EIL -\frac{Pb(L^2-b^2)^{3/2}}{9\sqrt{3}EIL}

 

θA=Pb(L2b2)6EIL θ_A = -\frac{Pb(L^2-b^2)}{6EIL}

 

For x<a: For  x<a:

y=Pb6EIL[x3(L2b2)x] y = \frac{Pb}{6EIL}[x^3-(L^2-b^2)x]

 

at xm=L2b23 at  x_m= \sqrt{\frac{L^2-b^2}{3}} θB=+Pa(L2a2)6EIL θ_B = +\frac{Pa(L^2-a^2)}{6EIL} For x = a:

y=Pa2b23EIL y = -\frac{Pa^2b^2}{3EIL}

5wL4384EI -\frac{5wL^4}{384EI} ±wL324EI \pm \frac{wL^3}{24EI} y=w24EI(x42Lx3+L3x) y = -\frac{w}{24EI}(x^4-2Lx^3+L^3x)
ML293EI \frac{ML^2}{9\sqrt{3}EI} θA=+ML6EI θ_A = +\frac{ML}{6EI} y=M6EIL(x3L2x) y = -\frac{M}{6EIL}(x^3-L^2x)
θB=ML3EI θ_B = -\frac{ML}{3EI}