Question 5.7: A ramp, a pulley, and two boxes. A box of mass mA = 10.0 kg ......

A ramp, a pulley, and two boxes. A box of mass m_{\mathrm{A}} = 10.0 kg rests on a surface inclined at θ = 37° to the horizontal. It is connected by a lightweight cord, which passes over a massless and frictionless pulley, to a second box of mass m_{\mathrm{B}}, which hangs freely as shown in Fig. 5-9a. (a) If the coefficient of static friction is \mu_s = 0.40, determine what range of values for mass m_{\mathrm{B}} will keep the system at rest. (b) If the coefficient of kinetic friction is \mu_k = 0.30, and m_{\mathrm{B}} = 10.0 kg, determine the acceleration of the system.

APPROACH Figure 5-9b shows two free-body diagrams for box m_{\mathrm{A}} because the force of friction can be either up or down the slope, depending on which direction the box slides: (i) if m_{\mathrm{B}} = 0 or is sufficiently small, m_{\mathrm{A}} would tend to slide down the incline, so \overrightarrow{\mathbf{F}}_{\mathrm{fr}} would be directed up the incline; (ii) if m_{\mathrm{B}} is large enough, m_{\mathrm{A}} will tend to be pulled up the plane, so \overrightarrow{\mathbf{F}}_{\mathrm{fr}} would point down the plane. The tension force exerted by the cord is labeled \overrightarrow{\mathbf{F}}_{\mathrm{T}}.

5.9
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) For both cases (i) and (ii), Newton’s second law for the y direction (perpendicular to the plane) is the same:

F_{\mathrm{N}}-m_{\mathrm{A}} g \cos \theta=m_{\mathrm{A}} a_y=0

since there is no y motion. So

F_{\mathrm{N}}=m_{\mathrm{A}} g \cos \theta.

Now for the x motion. We consider case (i) first for which \Sigma F= ma gives

m_{\mathrm{A}} g \sin \theta-F_{\mathrm{T}}-F_{\mathrm{fr}}=m_{\mathrm{A}} a_x

We want a_x = 0 and we solve for F_{\mathrm{T}} since F_{\mathrm{T}} is related to m_{\mathrm{B}} (whose value we are seeking) by F_{\mathrm{T}} = m_{\mathrm{B}}  g (see Fig. 5-9c).Thus

m_{\mathrm{A}} g \sin \theta-F_{\mathrm{fr}}=F_{\mathrm{T}}=m_{\mathrm{B}}  g.

We solve this for m_{\mathrm{B}} and set F_{\mathrm{fr}} at its maximum value \mu_{\mathrm{s}} F_{\mathrm{N}}=\mu_{\mathrm{s}} m_{\mathrm{A}} g \cos \theta to find the minimum value that m_{\mathrm{B}} can have to prevent motion (a_x = 0):

\begin{aligned}m_{\mathrm{B}} & =m_{\mathrm{A}} \sin \theta-\mu_{\mathrm{s}} m_{\mathrm{A}} \cos \theta \\& =(10.0 \mathrm{~kg})\left(\sin 37^{\circ}-0.40 \cos 37^{\circ}\right)=2.8 \mathrm{~kg} .\end{aligned}

Thus if m_{\mathrm{B}} < 2.8 kg, then box A will slide down the incline.

Now for case (ii) in Fig. 5-9b, box A being pulled up the incline. Newton’s second law is

m_{\mathrm{A}} g \sin \theta+F_{\mathrm{fr}}-F_{\mathrm{T}}=m_{\mathrm{A}} a_x=0.

Then the maximum value m_{\mathrm{B}} can have without causing acceleration is given by

F_{\mathrm{T}}=m_{\mathrm{B}} g=m_{\mathrm{A}} g \sin \theta+\mu_{\mathrm{S}} m_{\mathrm{A}} g \cos \theta

or

\begin{aligned}m_{\mathrm{B}} & =m_{\mathrm{A}} \sin \theta+\mu_{\mathrm{s}} m_{\mathrm{A}} \cos \theta \\& =(10.0 \mathrm{~kg})\left(\sin 37^{\circ}+0.40 \cos 37^{\circ}\right)=9.2 \mathrm{~kg} .\end{aligned}

Thus, to prevent motion, we have the condition

2.8 \mathrm{~kg}<m_{\mathrm{B}}<9.2 \mathrm{~kg}.

(b) If m_{\mathrm{B}} = 10.0 kg and \mu_k = 0.30, then m_{\mathrm{B}} will fall and m_{\mathrm{A}} will rise up the plane (case ii). To find their acceleration a, we use \Sigma F = ma for box A:

m_{\mathrm{A}} a=F_{\mathrm{T}}-m_{\mathrm{A}} g \sin \theta-\mu_{\mathrm{k}} F_{\mathrm{N}}.

Since m_{\mathrm{B}} accelerates downward, Newton’s second law for box B (Fig. 5-9c) tells us m_{\mathrm{B}}  a=m_{\mathrm{B}}  g  – F_{\mathrm{T}}, \text { or } F_{\mathrm{T}}=m_{\mathrm{B}}  g-m_{\mathrm{B}}  a, and we substitute this into the equation above:

m_{\mathrm{A}}  a=m_{\mathrm{B}}  g-m_{\mathrm{B}} a-m_{\mathrm{A}} g \sin \theta-\mu_{\mathrm{k}} F_{\mathrm{N}} .

We solve for the acceleration a and substitute F_{\mathrm{N}}=m_{\mathrm{A}} g \cos \theta , and then m_{\mathrm{A}}=m_{\mathrm{B}} = 10.0 kg, to find

\begin{aligned}a & =\frac{m_{\mathrm{B}} g-m_{\mathrm{A}} g \sin \theta-\mu_{\mathrm{k}} m_{\mathrm{A}} g \cos \theta}{m_{\mathrm{A}}+m_{\mathrm{B}}} \\& =\frac{(10.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^2\right)\left(1-\sin 37^{\circ}-0.30 \cos 37^{\circ}\right)}{20.0 \mathrm{~kg}} \\& =0.079 g=0.78 \mathrm{~m} / \mathrm{s}^2 .\end{aligned}

NOTE It is worth comparing this equation for acceleration a with that obtained in Example 5-5: if here we let θ = 0, the plane is horizontal as in Example 5-5, and we obtain a=\left(m_{\mathrm{B}} g-\mu_{\mathrm{k}} m_{\mathrm{A}} g\right) /\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) just as in Example 5-5 .

Related Answered Questions