Question 14.5.3: Use the Arrhenius equation to determine Ea. For the gas phas......

Use the Arrhenius equation to determine E\pmb{_{a}}.

For the gas phase decomposition of ethyl chloroformate, the rate constant is 1.05 × 10^{-3} s^{-1} at 470 K and 1.11 × 10^{-2} s^{-1} at 508 K.

ClCOOC_{2}H_{5}(g) → C_{2}H_{5}Cl(g) + CO_{2}(g)

Calculate the activation energy for this reaction.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

You are asked to determine the activation energy for a reaction.
You are given the rate constants for the reaction at two different temperatures.
First, create a table of the known and unknown variables.
T_{1} = 470 K                            T_{2} = 508 K
k_{1} = 1.05 × 10^{-3} s^{-1}          k_{2} = 1.11 × 10^{-2} s^{-1}
E_{a} = ?

Next, use the two-point version of the Arrhenius equation (Equation 14.8). The gas constant can be expressed in units of kJ/K · mol.

ln\frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R} = \left(\frac{1}{T_{2}}-\frac{1}{T_{1}} \right)

ln\left(\frac{1.11  \times  10^{-2}\text{ s}^{-1}}{1.05  \times  10^{-3}\text{ s}^{-1}} \right) = \frac{-E_{a}}{8.3145  \times  10^{-3}  \text{ kJ/K}  \cdot  \text{mol}} \left(\frac{1}{508  \text{ K} } -\frac{1}{470  \text{ K}} \right)

2.358 = \frac{-E_{a}}{8.3145  \times  10^{-3}  \text{ kJ/K}  \cdot  \text{mol}} \left(-1.59\times 10^{-4}\text{ K}^{-1}\right)

E_{a} = 123 kJ/mol

Related Answered Questions