Cam and Follower Stress Analysis of an Intermittent-Motion Mechanism
Figure 7.16 shows a camshaft and follower of an intermittent-motion mechanism. For the position indicated, the cam exerts a force F_{max} on the follower. What are the maximum stress at the contact line between the cam and follower, and the deflection?
Given: The shapes of the contacting surfaces are known. The material of all parts is AISI 1095 steel carburized on the surfaces, oil quenched, and tempered (Q&T) at 650°C.
Data:
F_{\max }=P_{\max }=1.6 kips , \quad r_c=1.5 \text { in., } \quad D_f=L_4=1.5 in
E=30 \times 10^6 psi , \quad S_y=80 ksi
Assumptions: Frictional forces can be neglected. The rotational speed is slow so that the loading is considered static.
See Figure 7.16, Table 8.4, and Tables B.1, and B.4 in Appendix B.
Equations on the second column of case A of Table 8.4 apply. We first determine the half width a of the contact patch. Since E_1=E_2=E \text { and } \Delta=2 / E, we have
a=1.076 \sqrt{\frac{F_{\max }}{L_4} r_c \Delta}
Substitution of the given data yields
\begin{aligned} a & =1.076\left[\frac{1600}{1.5}(1.5)\left(\frac{2}{30 \times 10^6}\right)\right]^{1 / 2} \\ & =11.113\left(10^{-3}\right) in . \end{aligned}
The rectangular patch area is
2 a L_4=2\left(11.113 \times 10^{-3}\right)(1.5)=33.34\left(10^{-3}\right) \text { in. }^2
Maximum contact pressure is then
\begin{aligned} p_o & =\frac{2}{\pi} \frac{F_{\max }}{a L_4} \\ & =\frac{2}{\pi} \frac{1600}{\left(11.113 \times 10^{-3}\right)(1.5)}=61.11 ksi \end{aligned}
The deflection \delta of the cam and follower at the line of contact is obtained as follows:
\delta=\frac{0.579 F_{\max }}{E L_4}\left(\frac{1}{3}+\ln \frac{2 r_c}{a}\right)
Introducing the numerical values,
\begin{aligned} \delta & =\frac{0.579(1600)}{30 \times 10^6(1.5)}\left(\frac{1}{3}+\ln \frac{2 \times 1.5}{11.113 \times 10^{-3}}\right) \\ & =0.122\left(10^{-3}\right) in \end{aligned}
Comment: The contact stress is determined to be less than the yield strength and the design is satisfactory. The calculated deflection between the cam and the follower is very small and does not affect the system performance.
TABLE 8.4 Maximum Pressure p_o , and Deflection \delta of Two Bodies at the Point of Contact |
||
Configuration | \text { Spheres: } p_o=1.5 \frac{F}{\pi a^2} | \text { Cylinders: } p_o=\frac{2}{\pi} \frac{F}{a L} |
\quad\quad\quad\quad\quad\quad\quad\quad
|
\text { Sphere on a flat surface } \\ \\ \begin{aligned} & a=0.880 \sqrt[3]{F r_1 \Delta} \\ & \delta=0.775 \sqrt[3]{F^2 \frac{\Delta^2}{r_1}} \end{aligned} | \text { Cylinder on a flat surface } \\ \\ \begin{aligned} & a=1.076 \sqrt{\frac{F}{L} r_1 \Delta} \\ & \text { For } E _1= E _2= E \\ & \delta=\frac{0.579 F}{E L}\left(\frac{1}{3}+\ln \frac{2 r_1}{a}\right) \end{aligned} |
\quad\quad\quad\quad\quad\quad\quad\quad
|
\text { Two spherical balls } \\ \\ \begin{aligned} & a=0.880 \sqrt[3]{F \frac{\Delta}{m}} \\ & \delta=0.775 \sqrt[3]{F^2 \Delta^2 m} \end{aligned} | \text { Two cylindrical rollers } \\ \\ a=1.076 \sqrt{\frac{F \Delta}{L m}} |
\quad\quad\quad\quad\quad\quad\quad\quad
|
\text { Sphere on a spherical seat } \\ \\ \begin{aligned} & a=0.880 \sqrt[3]{F \frac{\Delta}{n}} \\ & \delta=0.775 \sqrt[3]{F^2 \Delta^2 n} \end{aligned} | \text { Cylinder on a cylindrical seat } \\ \\ a=1.076 \sqrt{\frac{F \Delta}{L n}} |
Source: [9]. Notes: \Delta=\frac{1}{E_1}+\frac{1}{E_2}, m=\frac{1}{r_1}+\frac{1}{r_2}, n=\frac{1}{r_1}-\frac{1}{r_2} , where the modulus of elasticity (E ) and radius (r ) are for the contacting members, 1 and 2. The L represents the length of the cylinder (Figure 8.7). The total force pressing two spheres or cylinder is F . Poisson’s ratio \nu in the formulas is taken as 0.3. |
TABLE B.4 Mechanical Properties of Selected Heat-Treated Steels |
|||||||
AISI Number | Treatment | Temperature (°C) | Ultimate Strength S_u (MPa) | Yield Strength S_y (MPa) | Elongation in 50 mm (%) | Reduction in Area (%) | Brinell Hardness (HB) |
1030 | WQ&T | 205 | 848 | 648 | 17 | 47 | 495 |
WQ&T | 425 | 731 | 579 | 23 | 60 | 302 | |
WQ&T | 650 | 586 | 441 | 32 | 70 | 207 | |
Normalized | 925 | 521 | 345 | 32 | 61 | 149 | |
Annealed | 870 | 430 | 317 | 35 | 64 | 137 | |
1040 | OQ&T | 205 | 779 | 593 | 19 | 48 | 262 |
OQ&T | 425 | 758 | 552 | 21 | 54 | 241 | |
OQ&T | 650 | 634 | 434 | 29 | 65 | 192 | |
Normalized | 900 | 590 | 374 | 28 | 55 | 170 | |
Annealed | 790 | 519 | 353 | 30 | 57 | 149 | |
1050 | WQ&T | 205 | 1120 | 807 | 9 | 27 | 514 |
WQ&T | 425 | 1090 | 793 | 13 | 36 | 444 | |
WQ&T | 650 | 717 | 538 | 28 | 65 | 235 | |
Normalized | 900 | 748 | 427 | 20 | 39 | 217 | |
Annealed | 790 | 636 | 365 | 24 | 40 | 187 | |
1060 | OQ&T | 425 | 1080 | 765 | 14 | 41 | 311 |
OQ&T | 540 | 965 | 669 | 17 | 45 | 277 | |
OQ&T | 650 | 800 | 524 | 23 | 54 | 229 | |
Normalized | 900 | 776 | 421 | 18 | 37 | 229 | |
Annealed | 790 | 626 | 372 | 11 | 38 | 179 | |
1095 | OQ&T | 315 | 1260 | 813 | 10 | 30 | 375 |
OQ&T | 425 | 1210 | 772 | 12 | 32 | 363 | |
OQ&T | 650 | 896 | 552 | 21 | 47 | 269 | |
Normalized | 900 | 1010 | 500 | 9 | 13 | 293 | |
Annealed | 790 | 658 | 380 | 13 | 21 | 192 | |
4130 | WQ&T | 205 | 1630 | 1460 | 10 | 41 | 467 |
WQ&T | 425 | 1280 | 1190 | 13 | 49 | 380 | |
WQ&T | 650 | 814 | 703 | 22 | 64 | 245 | |
Normalized | 870 | 670 | 436 | 25 | 59 | 197 | |
Annealed | 865 | 560 | 361 | 28 | 56 | 156 | |
4140 | OQ&T | 205 | 1770 | 1640 | 8 | 38 | 510 |
OQ&T | 425 | 1250 | 1140 | 13 | 49 | 370 | |
OQ&T | 650 | 758 | 655 | 22 | 63 | 230 | |
Normalized | 870 | 870 | 1020 | 18 | 47 | 302 | |
Annealed | 815 | 655 | 417 | 26 | 57 | 197 | |
Source: ASM Metals Reference Book, 3rd ed. Materials Park, OH, American Society for Metals, 1993. | |||||||
Notes: To convert from MPa to ksi, divide given values by 6.895. Values tabulated for 25 mm round sections and of gage length 50 mm. The properties for quenched and tempered steel are from a single heat: OQ&T, oil-quenched and tempered; WQ&T, water-quenched and tempered. |