Holooly Plus Logo

Question 8.3: Ball Bearing Load Capacity A single-row ball bearing support......

Ball Bearing Load Capacity

A single-row ball bearing supports a radial load F as shown in Figure 8.11a. Calculate:

a. The maximum pressure at the contact point between the outer race and a ball.

b. The factor of safety, if the ultimate strength is the maximum usable stress.

Given: F=1.2 kN, E=200 GPa, \nu =0.3, and S_u=1900 MPa. Ball diameter is 12 mm; the radius of the groove, 6.2 mm; and the diameter of the outer race, 80 mm.

Assumptions: The basic assumptions listed in Section 8.6 apply. The loading is static.

F8.11
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

See Figure 8.11a and Table 8.5.

For the situation described, r_1=r_1^{\prime}=0.006  m , r_2=-0.0062  m \text {, and } r_2^{\prime}=-0.04  m .

a. Substituting the given data into Equations (8.8) and (8.10), we have

m=\frac{4}{\frac{1}{r_1}+\frac{1}{r_1^{\prime}}+\frac{1}{r_2}+\frac{1}{r_2^{\prime}}} \quad n=\frac{4 E}{3\left(1-\nu^2\right)}       (8.8)

A=\frac{2}{m}, \quad B=\pm \frac{1}{2}\left[\left(\frac{1}{r_1}-\frac{1}{r_1^{\prime}}\right)^2+\left(\frac{1}{r_2}-\frac{1}{r_2^{\prime}}\right)^2+2\left(\frac{1}{r_1}-\frac{1}{r_1^{\prime}}\right)\left(\frac{1}{r_2}-\frac{1}{r_2^{\prime}}\right) \cos 2 \theta\right]^{1 / 2}     (8.10)

m=\frac{4}{\frac{2}{0.006}-\frac{1}{0.0062}-\frac{1}{0.04}}=0.0272, \quad n=\frac{4\left(200 \times 10^9\right)}{3(0.91)}=293.0403 \times 10^9

A=\frac{2}{0.0272}=73.5294, \quad B=\frac{1}{2}\left[(0)^2+(-136.2903)^2+2(0)^2\right]^{1 / 2}=68.1452

From Equation (8.9),

\cos \alpha=\frac{B}{A}      (8.9)

\cos \alpha=\frac{68.1452}{73.5294}=0.9268, \quad \alpha=22.06^{\circ}

Corresponding to this value of a, interpolating in Table 8.5, we obtain c_a =3.5623 and c_b =0.4255. The semiaxes of the ellipsoidal contact area are found by using Equation (8.7):

a=c_a \sqrt[3]{\frac{F m}{n}} \quad b=c_b \sqrt[3]{\frac{F m}{n}}       (8.7)

a=3.5623\left[\frac{1200 \times 0.0272}{293.0403 \times 10^9}\right]^{1 / 3}=1.7140  mm

b=0.4255\left[\frac{1200 \times 0.0272}{293.0403 \times 10^9}\right]^{1 / 3}=0.2047  mm

The maximum contact pressure is then

p_o=1.5 \frac{1200}{\pi(1.7140 \times 0.2047)}=1633  MPa

b. Since contact stresses are not linearly related to load F, the safety factor is defined by Equation (1.1):

n=\frac{\text { Failure load }}{\text { Allowable load }}      (1.1)

n=\frac{F_u}{F}     (a)

in which F_u is the ultimate loading. The maximum principal stress theory of failure gives

S_u=\frac{1.5 F_u}{\pi a b}=\frac{1.5 F_u}{\pi c_a c_b \sqrt[3]{\left(F_u m / n\right)}}

This may be written as

S_u=\frac{1.5 \sqrt[3]{F_u}}{\pi c_a c_b(m / n)^{2 / 3}}      (8.11)

Introducing the numerical values into the preceding expression, we have

1900\left(10^6\right)=\frac{1.5 \sqrt[3]{F_u}}{\pi(3.5623 \times 0.4255)\left(\frac{0.0272}{293.0403 \times 10^9}\right)^{2 / 3}}

Solving, F_u =1891 N. Equation (a) gives then

n=\frac{1891}{1200}=1.58

Comments: In this example, the magnitude of the contact stress obtained is quite large in comparison with the values of the stress usually found in direct tension, bending, and torsion. In all contact problems, 3D compressive stresses occur at the point, and hence a material is capable of resisting higher stress levels.

TABLE 8.5
Factors for Use in Equation (8.7)
\alpha\left({ }^{\circ}\right) c_a c_b \alpha\left({ }^{\circ}\right) c_a c_b
20 3.778 0.408 60 1.486 0.717
30 2.731 0.493 65 1.378 0.759
35 2.397 0.530 70 1.284 0.802
40 2.136 0.567 75 1.202 0.846
45 1.926 0.604 80 1.128 0.893
50 1.754 0.641 85 1.061 0.944
55 1.611 0.678 90 1.000 1.000

Related Answered Questions