A single-spool turbojet engine has the following data:
Flying Mach number 0.6
Ambient conditions T_{\text{a}}=222 \text{ K},P_{\text{a}}=25\text{kPa}
Compressor pressure ratio 6
Maximum temperature 1300 K
Fuel heating value 45,000 kJ/kg
Exhaust nozzle area 0.2 m²
All the processes are assumed ideal and no pressure is lost either in the combustion chamber or in the inoperative afterburner.
1. Deduce that the nozzle is choked.
2. Calculate the thrust force.
3. Calculate the thrust force if the nozzle is unchoked.
The given data are rearranged as follows:
M=0.6, \ T_{\text{a}}=222 \text{ K}, \ P_{\text{a}}=25 \text{ kPa}, \ \pi_{\text{c}}=6 \\ T_{\text{o max}}=1300 \text{ K}, \ Q_{\text{R}}=45,000 \text{ kJ/kg}, \ A_{\text{e}}=0.2 \text{ m}^2
The flight speed
V=M\sqrt{\gamma RT_{\text{a}}}=0.6 \sqrt{1.4 \times 287 \times 222}=179.2 \text{ m/s}
Turbojet Engine
Diffuser
\begin{matrix} T_{02}&=&T_{\text{a}}\left(1+\frac{\gamma-1}{2}M^2 \right)=238 \text{ K} \\ P_{02}&=&P_{\text{a}}\left(1+\frac{\gamma-1}{2} M^2\right)^{\gamma/(\gamma-1)} =31.88 \text{ kPa} \end{matrix}
Compressor
T_{03}=T_{02}\pi_{\text{c}}^{(\gamma-1)/\gamma}=397.3 \text{ K} \\ P_{03}=\pi_{\text{c}}P_{02}=191.33 \text{ kPa}
Combustion chamber
\begin{matrix} T_{04}&=&1300 \text{ K} \\ P_{04}&=&P_{03}&=&191.33 \text{ kPa} \\ f&=&\frac{Cp(T_{04}-T_{03})}{Q_{\text{R}}-CpT_{04}}&=&\frac{1.01(1300-397.3)}{45000-1.01 \times 1300}&=&0.02087 \end{matrix}
Turbine: From Equation 4.6 (\left(\frac{T_{05}}{T_{04}} \right) =1-\frac{(Cp_{\text{c}}/Cp_{\text{h}})T_{02}}{\lambda(1+f)T_{04}} \left[\left(\frac{T_{03}}{T_{02}} \right)-1 \right] ), with constant specific heats and λ = 0.8, then
\begin{matrix} T_{05}&=&T_{04}-\frac{(T_{03}-T_{02})}{0.8(1+f)}&=&1105 \text{ K} \\ P_{05}&=&P_{04}\left(\frac{T_{05}}{T_{04}} \right)^{\gamma/(\gamma-1)}&=&182.63 \text{ kPa} \end{matrix}
Tail pipe: Ideal flow is assumed in the tail pipe. Thus there is no pressure or temperature drop, or
T_{06}=T_{05}\text{ and }P_{06}=P_{05}
Nozzle
Case 1 Check if the nozzle is choked.
P_{\text{c}}=\frac{P_{06}}{((\gamma+1)/2)^{\gamma/(\gamma-1)}} =96.48 \text{ kPa}
Since P_{\text{a}} = 25 kPa, then P_{\text{c}} \gt P_{\text{a}} , thus the nozzle is choked.
\begin{matrix} \therefore P_7&=&P_{\text{C}}&=&96.48 \text{ kPa} \\ \therefore T_7&=& T_{\text{c}}&=&\frac{T_{06}}{(\gamma+1)/2}=920.8 \text{ K}\\ V_7&=& \text{sonic speed}&=&\sqrt{\gamma RT_7}=608.26 \text{ K} \end{matrix}
The mass flow rate is calculated as follows:
\dot{m}=\rho_7V_7A_7=\frac{P_7}{RT_7}V_7A_7=\frac{96.48 \times 10^3}{287 \times 920.8} \times 608.26 \times 0.2=44.41 \text{ kg/s}
The thrust force T is expressed by the relation
\begin{matrix} T&=&\dot{m}_{\text{a}}[(1+f)V_7-V]+A_{\text{e}}(P_{\text{e}}-P_{\text{a}}) \\ &=&44.41 \times (1.02087 \times 608.26-179.2)+0.2 \times 10^3 \times (96.48-25) \\ &=& 33914 \ N=33.914 \text{ kN} \end{matrix}
Case 2 The nozzle is unchoked, then
\begin{matrix} P_{7}&=&P_{\text{a}}=25 \text{ kPa} \\ \therefore T_7&=&T_{05}\left(\frac{P_7}{P_{05}} \right)^{(\gamma-1/\gamma)}&=&625.7 \text{ K} \end{matrix}
The exhaust speed is calculated as follows: V_7=\sqrt{2Cp(T_{05}-T_7)}=983.96 \text{ m/s}
This means that the exhaust Mach number, M_7=\frac{V_7}{\sqrt{\gamma RT_7}} =1.962
The thrust force is calculated as follows:
\begin{matrix} T&=& \dot{m}_{\text{a}}[(1+f)V_7-V]&=&44.41 \times (1.02087 \times 983.96-179.2)&=&36651 \text{ N} \\ &=& 36.65 \text{ kN} \end{matrix}
Thus, the thrust force for choked nozzle is less than its value for unchoked nozzle.