Question 12.4: Locate all maximum points, minimum points and points of infl......

Locate all maximum points, minimum points and points of inflexion of  y=x^4.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
y^{\prime}=4 x^3 \quad y^{\prime \prime}=12 x^2

y′ = 0 at x = 0. Also y′′ = 0 at x = 0 and so the second-derivative test is of no help in determining the position of maximum and minimum points. We return to examine y′ on both sides of x = 0. To the left of x = 0, y′ < 0; to the right y′ > 0 and so x = 0 is a minimum point. Figure 12.12 illustrates this. Note that at the point x = 0, the second derivative y′′ is zero. However, y′′ is positive both to the left and to the right of x = 0; thus x = 0 is not a point of inflexion.

Screenshot 2023-02-15 085127

Related Answered Questions

Question: 12.5

Verified Answer:

Given y = x³ + 2x² then y′ = 3x² + 4x and y′′ = 6x...
Question: 12.9

Verified Answer:

(a) If  \mathbf{a}=3 t^2 \mathbf{i}+\cos 2 ...
Question: 12.3

Verified Answer:

Given y = x³, then y′ = 3x² and y′′ = 6x. Points o...
Question: 12.2

Verified Answer:

(a) Given y = x² then y′ = 2x and y′′ = 2. We loca...