Question 7.4: The shear frame shown in Fig. 7.9a is subjected to the expon......

The shear frame shown in Fig. 7.9a is subjected to the exponential pulse force shown in Fig 7.9b. Write a computer program for the average acceleration method (incremental formulation) to evaluate the dynamic response of the frame. Plot the time histories for displacement u(t), velocity \dot{u}(t) and acceleration \ddot{u}(t) in the time interval 0-3 s. Assume E = 200  GPa, W =1079.1 kN, ρ = 0.07, F_0=450  kN \text { and } t_{ d }=0.75  s and use a time step Δt of 0.01 s.

التقاط
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

I for ISWB 600 @1337 = 106198.5e^4mm^4

Given

\begin{aligned}& \text { Mass }=m=110000  kg \\& k=\frac{3 \times 200 \times 10^9 \times 106198.5 \times 10^4}{10^{12} \times 5^3} \\& +\frac{12 \times 200 \times 10^9 \times 106198.5 \times 10^4}{10^{12} \times 8^3} \\&\end{aligned}

= 5097528 + 4978054
= 10075582 N/m

\begin{aligned}& \omega_n=\sqrt{\frac{k}{m}}=\sqrt{\frac{10075582}{110 \times 1000}}=9.57  rad / s \\& T=\frac{2 \pi}{\omega_n}=\frac{2 \pi}{9.57}=0.65  s \\& \Delta t \leq \frac{T}{10} \\& \Delta t \leq 0.065  s\end{aligned}

We use Δt = 0.01 s.
The displacement velocity and acceleration response are shown in Fig.7.10 and the values are given in Table 7.9. The program using MATLAB for constant acceleration method is given below.
Program 7.4: MATLAB program for dynamic response by constant acceleration method

Table 7.9 Displacement, velocity and acceleration response for Example 7.4

a v u t a v u t
0.5505 0.2701 0.0185 0.11 4.0909 0 0 0
0.1883 0.2738 0.0212 0.12 3.8587 0.0397 0.0002 0.01
-0.1669 0.2739 0.0239 0.13 3.6001 0.0770 0.0008 0.02
-0.5122 0.2705 0.0266 0.14 3.3177 0.1116 0.0017 0.03
-0.8446 0.2637 0.0293 0.15 3.0141 0.1433 0.0030 0.04
-1.1615 0.2537 0.0319 0.16 2.6922 0.17178 0.0046 0.05
-1.4602 0.2406 0.0347 0.17 2.3550 0.1937 0.0064 0.06
-1.7385 0.2246 0.0367 0.18 2.0057 0.2189 0.0085 0.07
-1.9941 0.2059 0.0389 0.19 1.6473 0.2371 0.0108 0.08
-2.2253 0.18580 0.0408 0.20 1.2832 0.2518 0.0132 0.09
0.9165 0.2628 0.0158 0.10
التقاط
التقاط
The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

% Response by constant acceleration method.
ma=110000;

k=10075582;
wn=sqrt(k/ma)
r=0.07;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;

tt=3;
n=300;
n1=n+1
dt=tt/n;
td=.75;
jk=td/dt;
for m=1:n1
p(m)=0.0;
end
jk1=jk+1
for n=1:jk1
t=(n-1)*dt
p(n)=450000*(1-t/td)*exp(-2.0*t/td)
end
an(1)=(p(1)-c*v(1)-k*u(1))/ma
kh=k+4.0*ma/(dt*dt)+2.0*c/dt
for i=1:n1
s(i)=(i-1)*dt
end
for i=2:n1
ww=p(i)-p(i-1)+(4.0*ma/dt+2.0*c)*v(i-1)+2.0*ma*an(i-1)
xx=ww/kh
yy=(2/dt)*xx-2.0*v(i-1)
zz=(4.0/(dt*dt))*(xx-dt*v(i-1))-2.0*an(i-1)
u(i)=u(i-1)+xx
v(i)=v(i-1)+yy
an(i)=an(i-1)+zz
end
figure(1);

plot(s,u);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(s,v);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)
figure(3);
plot(s,an);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)
figure(4);
plot(s,p)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

Related Answered Questions