Question 4.10: Figure 4.33 illustrates the performance map for a turbojet e......

Figure 4.33 illustrates the performance map for a turbojet engine having the following operating conditions and some other data given below:
Ambient temperature 247.9 K                     Ambient pressure 46.0 kPa
Compressor pressure ratio 10                      Turbine inlet temperature 1600 K
Diffuser efficiency 0.95                                Compressor efficiency 0.8
Burner efficiency 0.98                                  Turbine efficiency 0.9
Nozzle efficiency 0.9                                    Pressure drop in combustion chamber 1%
Exhaust area 0.3 m²

C_{\text{p}_{\text{h}}} = 1.148 kJ/kg · K, C_{\text{p}_{\text{c}}} = 1.005 kJ/kg · K, Q_{\text{R}} = 45,0000 kJ/kg

It is required to calculate

1. The fuel-to-air ratio
2. The compressor outlet temperature
3. The flight Mach number
4. The turbine outlet temperature
5. The air mass flow rate
6. The inlet area

4.33
4.28
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From the performance map with known TIT (1600 K) and compressor pressure ratio (10):

1. The specific thrust (T / \dot{m}_{\text{a}}) is 815 N · s/kg
2. The specific fuel consumption is.3.5 × 10^{-5} kg/N · s

Since

\begin{matrix} \text{TSFC} &=& \frac{\dot{m}_{\text{f}}}{T} \\ \therefore f &=&\frac{\dot{m}_{\text{f}}}{\dot{m}_{\text{a}}}&=&\frac{\dot{m}_{\text{f}}}{T}\frac{T}{\dot{m}_{\text{a}}} &=&\left(3.5 \times 10^{-5}\frac{\text{kg}}{\text{N.s}} \right)\left(815\frac{\text{N.s}}{\text{kg}} \right) \\ \therefore f&=& 0.02853 \end{matrix}

From the energy balance in the combustion chamber:

\begin{matrix} f&=&\frac{Cp_{\text{cc}}T_{4}-Cp_{\text{c}}T_{03}}{\eta_{\text{b}}Q_{\text{R}}-Cp_{\text{cc}}T_{04}} \\ \therefore T_{03} &=&\frac{1}{Cp_{\text{c}}}[Cp_{\text{cc}}T_{04}-f(\eta_{\text{b}}Q_{\text{R}}-Cp_{\text{cc}}T_{04})] \\ &=& \frac{1}{1.005}[1.148 \times 1600-0.02853(0.98 \times 45,000-1.148 \times 1600)] \\ &=& 631 \text{ K} \end{matrix}

The compressor outlet temperature is given by the relation

T_{02}=\frac{T_{03}}{\left[1+\left(\left(\pi_{\text{c}}^{(\gamma_{\text{c}}-1)/\gamma_{\text{c}}}\right)-1 \right) /\eta_{\text{c}}\right] } =291.5 \text{ K}

The temperature ratio within the diffuser is

\frac{T_{02}}{T_{\text{a}}} =\frac{T_{0\text{a}}}{T_{\text{a}}} =1+\frac{\gamma-1}{2}M^2 \\ \begin{matrix} \therefore M&=& \sqrt{\frac{2}{\gamma-1}\left(\frac{T_{02}}{T_{\text{a}}}-1 \right) }=\sqrt{\frac{2}{0.4}\left(\frac{291.5}{247.9}-1 \right) } \\ M&=& 0.938 \end{matrix}

The flight speed is then

V_{\text{f}}=M\sqrt{\gamma RT_{\text{a}}}=296 \text{ m/s}

The diffuser pressure ratio is

P_{02}=P_{\text{a}}\left(1+\eta_{\text{d}}\frac{\gamma_{\text{c}}-1}{2} M^2_{\text{a}}\right) ^{\gamma_{\text{c}}/(\gamma_{\text{c}}-1)}=79 \text{ kPa}

The compressor outlet pressure is

P_{03}=(P_{02})(\pi_{\text{c}})=790 \text{ kPa}

Owing to the pressure drop in the combustion chamber, the outlet pressure for the gases leaving the combustion chamber is

P_{04}=(1-\Delta P)P_{03}=0.99 \times 790=782.1 \text{ kPa}

From the energy balance between the compressor and turbine, the turbine outlet temperature is

\begin{matrix} T_{05} &=& T_{04}-\frac{Cp_{\text{c}}(T_{03}-T_{02})}{(1+f)Cp_{\text{h}}} &=&1600-\frac{1.005(631-291.5)}{1.02853 \times 1.148} \\ &=& 1311 \text{ K} \end{matrix}

The pressure ratio in the turbine is

\frac{P_{05}}{P_{04}} =\left[-\frac{1}{\eta_{\text{t}}}\left(1-\frac{T_{05}}{T_{04}} \right) \right] ^{(\gamma_{\text{h}}/\gamma_{\text{h}}-1)}=\left[1-\frac{1}{0.9}\left(1-\frac{1311}{1600} \right) \right] ^4 =0.4082

Since P_{03}=P_{04}=782.1 \text{ kPa}

Then P_{05}=319.2 \text{ kPa}

Now, the nozzle is to be checked out for choking:

\frac{P_{05}}{P_{\text{c}}} =\frac{1}{[1-(1/\eta_{\text{n}})(\gamma_{\text{h}}-1)/(\gamma_{\text{h}}+1)]^{\gamma_{\text{h}}/(\gamma_{\text{h}}-1)} }=\frac{1}{(1-(1/0.95)(0.33/2.33))^4} =1.907 \\ P_{\text{c}}=167.4 \text{ kPa}

Since P_{\text{c}} is greater than P_{\text{a}} , then the nozzles are choked. The gases leave the nozzle at the temperature

T_7=T_{\text{c}}=\frac{T_{05}}{(\gamma+1)/2} =1123.7 \text{ K}

The jet speed is then

V_7=V_{\text{c}}=\sqrt{\gamma RT_7}=\sqrt{1.333 \times 287 \times 1123.7}=655.75 \text{ m/s}

The specific thrust is given by the relation

\begin{matrix} \frac{T}{\dot{m}_{\text{a}}} &=&(1+f)V_7-V_{\text{f}}+\frac{A_{\text{e}}}{\dot{m}_{\text{a}}}(P_7-P_{\text{a}}) \\ 815&=& 1.02853 \times 655.75 -296 +\frac{0.3}{\dot{m}_{\text{a}}}(167.4-46) \times 10^3 \end{matrix}

The mass flow rate is \dot{m}_{\text{a}} = 83.43 kg/s.
Finally, since the mass flow rate is given by the relation:

\dot{m}_{\text{a}}=\rho_{\text{i}}V_{\text{f}}A_{\text{i}}=\frac{P_{\text{i}}}{RT_{\text{i}}} V_{\text{f}}A_{\text{i}}

The inlet area is then A_{\text{i}} = 0.436 m² .

Hint: From the performance map, it is seen that for a constant TIT, the specific thrust increases with the increase in compression pressure ratio at first and then reduces. Thus, for each TIT there is an optimum (\pi_{\text{c}}) that yields a maximum specific thrust. This optimum (\pi_{\text{c}}) increases as the TIT increases.

\begin{matrix} T&=&\dot{m}_{\text{a}}[(1+f+f_{\text{ab}})V_7-V_{\text{f}}]+A_7(P_7-P_{\text{a}}) \\ \text{TSFC}&=&\frac{\dot{m}_{\text{f}}+\dot{m}_{\text{ab}}}{T}=\frac{f+f_{\text{ab}}}{T/\dot{m}_{\text{a}}} \\ \eta_{\text{p}}&=&\frac{TV}{TV+0.5 \dot{m}_{\text{a}}(1+f+f_{\text{ab}})(V_7-V)^2} \\\eta_{\text{th}} &=& \frac{TV+0.5 \dot{m}_{\text{a}}(1+f+f_{\text{ab}})(V_7-V)^2}{\dot{m}_{\text{a}}(f+f_{\text{ab}})Q_{\text{HV}}} \\ \eta_{\text{o}}&=&\frac{TV}{\dot{m}_{\text{a}}(f+f_{\text{ab}})Q_{\text{HV}}} \end{matrix}

C_{\text{p}_{\text{c}}} : Specific heat at constant pressure for cold air
C_{\text{p}_{\text{h}}} : Specific heat at constant pressure for hot gases
\dot{m}_{\text{a}} : Air mass flow rater
\dot{m}_{\text{f}}
 : Fuel mass flow rate
ƒ : Fuel-to-air ratio
\dot{m}_{\text{f}_{\text{ab}}} : Fuel burnt in afterburner
f_{\text{ab}} : Afterburner fuel-to-air ratio
Q_{\text{R}} : Fuel heating value
\gamma_{\text{c}} : Ratio of specific heats for cold air
\gamma_{\text{h}} : Ratio of specific heats for hot gases

Summary of mathematical relations
Ideal and Actual Cycles for a Turbojet Engine

Element  Ideal cycle  Actual cycle
Diffuser \eta_{\text{d}}=1 T_{02}=T_{\text{a}}\left(1+\frac{\gamma_{\text{c}}-1}{2}M^2 \right) \\ P_{02}=P_{\text{a}}\left(1+\eta_{\text{d}}\frac{\gamma_{\text{c}}-1}{2}M^2 \right) ^{\gamma_{\text{c}}/(\gamma_{\text{c}}-1)}
Compressor \eta_{\text{c}}=1 \begin{matrix} T_{03}&=&T_{02}\left(1+\frac{\pi_{\text{c}}^{(\gamma_{\text{c}}-1/\gamma_{\text{c}})}-1}{\eta_{\text{c}}} \right) \\ P_{03}&=&\pi_{\text{c}}P_{02} \end{matrix}
Combustion \eta_{\text{b}}=1 T_{04}=TIT
chamber \Delta P_0\%=0 \begin{matrix} P_{04}&=&(1-\Delta P\%)P_{03} \\ f&=& \frac{C_{\text{p}_{\text{h}}}T_{04}-C_{\text{p}_{\text{c}}}T_{03}}{\eta_{\text{b}}Q_{\text{R}}-C_{\text{p}_{\text{h}}}T_{04}} \\ \dot{m}_{\text{f}} &=& f \dot{m}_{\text{a}} \end{matrix}
Turbine \eta_{\text{m}}=1 \\ \eta_{\text{t}}=1 T_{05}=T_{04}-\frac{C_{\text{p}_{\text{c}}}}{\eta_{\text{b}}\lambda(1+f)C_{\text{p}_{\text{h}}}} (T_{03}-T_{02}) \\ \ \\ P_{05}=P_{04}\left(1-\frac{T_{04}-T_{05}}{\eta_{\text{t}}T_{04}} \right) ^{\gamma_{\text{h}}/(\gamma_{\text{h}}-1)}
Afterburner \Delta P_{\text{ab}}=0 \\ \ \\ \ \\ \eta_{\text{ab}}=1 P_{06}=(1-\Delta P_{\text{ab}}\% )P_{05} \\ \text{For inoperative afterburner }T_{06}=T_{05} \\ \text{For operative afterburner }T_{06}=T_{0_{\text{max}}} \\ f_{\text{ab}}=\frac{(1+f)C_{\text{p}_{\text{h}}}(T_{06}-T_{05})}{\eta_{\text{ab}}Q_{\text{R}}-C_{\text{p}_{\text{h}}}T_{06}} \\ \dot{m} _{f\text{ab}}=f_{\text{ab}}\dot{m}_{\text{a}}
Nozzle \eta_{\text{n}}=1 P_{\text{c}}=P_{06}\left(1-\frac{1}{\eta_{\text{n}}}\frac{\gamma_{\text{h}}-1}{\gamma_{\text{h}}+1} \right) ^{\gamma_{\text{h}}/(\gamma_{\text{h}}-1)} \\ \text{The nozzle is choked if } P_{\text{c}}\geq P_{\text{a}} \\ P_7=P_{\text{c}} \\ T_7=T_{\text{c}}=\frac{T_{06}}{(\gamma_{\text{h}}+1)/2} \\ V_7=\sqrt{\gamma_{\text{h}}RT_7} \\ \text{The nozzle is unchoked if } P_{\text{c}}\lt P_{\text{a}} \\ P_7=P_{\text{a}} \\ T_7=T_{06}\left[1- \eta_{\text{n}}\left\{1-\left(\frac{P_7}{P_{06}} \right)^{(\gamma_{\text{h}}-1)/\gamma_{\text{h}}} \right\} \right] \\ V_7=\sqrt{2C_{\text{p}_{\text{h}}}(T_{06}-T_7)}
4.29
4.30
4.31
4.32

Related Answered Questions