You are asked to evaluate the statements of a manufacturer of adhesives who claims that the shelf life of his bolt thread adhesive is approximately normally distributed with a standard deviation equal to 50 weeks. A random sample of 10 of these adhesive samples was found to have a standard deviation of 60 weeks. You wish to test the hypothesis that σ > 50 weeks. You decide to use a 0.01 level of significance for this analysis. You proceed as follows using a χ^{2} statistic.
Approach:
1. H_{a} : σ^{2} = 2500 H_{a} : σ^{2} > 2500
2. \alpha = 0.01 S = 60 n = 10
3. From the Table 4.6, we find for
(n −1) = 9 and \alpha = 0.01 \Longrightarrow χ^{2} = 21.67
Displaying the above data on a sketch reveals that the null hypothesis is rejected, when χ^{2} > 21.67.
4. Given χ^{2} =\left[\left(n-1\right)s^{2} \right]/\left(\sigma _{0}\right)^{2} where n = 10, S = 60 , σ_{0} = 50
We find χ^{2}=\frac{\left(10-1\right) \left(60\right)^{2} }{\left(50\right)^{2} }=12.96
5. Therefore, since the value of χ^{2} = 12.96 is within the bounds of χ^{2} = 21.67 we do not reject H_{0}.
You find that there is insufficient data to reject the hypothesis that the standard deviation is 50 weeks. Therefore, we accept H_{0} and we can conclude that the standard deviation of the adhesive shelf life is 50 weeks.
TABLE 4.6 | ||||||||||
Critical Values of the Chi-Square Distribution [9] Values of 2 P Corresponding to P | ||||||||||
![]() |
||||||||||
Df | χ^{2}_{.005} | χ^{2}_{.01} | χ^{2}_{.025} | χ^{2}_{.05} | χ^{2}_{.10} | χ^{2}_{.90} | χ^{2}_{.95} | χ^{2}_{.975} | χ^{2}_{.99} | χ^{2}_{.995} |
1 | .000039 | .00016 | .00098 | .0039 | .0158 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 |
2 | .0100 | .0201 | .0506 | .1026 | .2107 | 4.61 | 5.99 | 7.38 | 9.21 | 10.60 |
3 | .0717 | .115 | .216 | .352 | .584 | 6.25 | 7.81 | 9.35 | 11.34 | 12.84 |
4 | .207 | .297 | .484 | .711 | 1.064 | 7.78 | 9.49 | 11.14 | 13.28 | 14.86 |
5 | .412 | .554 | .831 | 1.15 | 1.61 | 9.24 | 11.07 | 12.83 | 15.09 | 16.75 |
6 | .676 | .872 | 1.24 | 1.64 | 2.20 | 10.64 | 12.59 | 14.45 | 16.81 | 18.55 |
7 | .989 | 1.24 | 1.69 | 2.17 | 2.83 | 12.02 | 14.07 | 16.01 | 18.48 | 20.28 |
8 | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 13.36 | 15.51 | 17.53 | 20.09 | 21.96 |
9 | 1.73 | 2.09 | 2.70 | 3.33 | 4.17 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59 |
10 | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 15.99 | 18.31 | 20.48 | 23.21 | 25.19 |
11 | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 17.28 | 19.68 | 21.92 | 24.73 | 26.76 |
12 | 3.07 | 3.57 | 4.4 | 5.23 | 6.30 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30 |
13 | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82 |
14 | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32 |
15 | 4.60 | 5.23 | 6.26 | 7.26 | 8.55 | 22.31 | 25.00 | 27.49 | 30.58 | 32.8 |
16 | 5.14 | 5.81 | 6.91 | 7.96 | 9.31 | 23.54 | 26.30 | 28.85 | 32.00 | 34.27 |
18 | 6.26 | 7.01 | 8.23 | 9.39 | 10.86 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16 |
20 | 7.43 | 8.26 | 9.59 | 10.85 | 12.44 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00 |
24 | 9.89 | 10.86 | 12.40 | 13.85 | 15.66 | 33.2 | 36.42 | 39.36 | 42.98 | 45.56 |
30 | 13.79 | 14.95 | 16.79 | 18.49 | 20.6 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67 |
40 | 20.71 | 22.16 | 24.43 | 25.51 | 29.05 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77 |
60 | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95 |
120 | 83.85 | 86.92 | 91.58 | 95.70 | 100.62 | 40.23 | 146.57 | 152.21 | 158.95 | 163.64 |