Question 17.9: Calculating the Common-Ion Effect on Acid Ionization (Effect...

Calculating the Common-Ion Effect on Acid Ionization (Effect of a Strong Acid)

The degree of ionization of acetic acid, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, in a 0.10  \mathrm{M} aqueous solution at 25^{\circ} \mathrm{C} is 0.013. K_{a} at this temperature is 1.7 \times 10^{-5}. Calculate the degree of ionization of \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} in a 0.10  \mathrm{M} solution at 25^{\circ} \mathrm{C} to which sufficient \mathrm{HCl} is added to make it 0.010  \mathrm{M}  \mathrm{HCl}. How is the degree of ionization affected?

PROBLEM STRATEGY

This is an acid-ionization problem, but it differs from the simple ionization illustrated by Example 17.2. Here you have a starting concentration of \mathrm{H}_{3} \mathrm{O}^{+} (=0.010  M) from the addition of a strong acid (\mathrm{HCl}). This gives a different type of equation in Step 2, but you solve it in Step 3 by using a similar approximation method. You assume that x is small compared with starting concentrations of acid and \mathrm{H}_{3} \mathrm{O}^{+}, so that the resulting equation is linear, rather than quadratic. The calculation of degree of ionization follows that in Example 17.2.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STEP 1 Starting concentrations are \left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.10  \mathrm{M},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.010  \mathrm{M} (from \mathrm{HCl} ), and \left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]=0. The acetic acid ionizes to give an additional x \mathrm{mol} / \mathrm{L} of \mathrm{H}_{3} \mathrm{O}^{+}and x \mathrm{~mol} / \mathrm{L} of \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}. The table is

\begin{array}{cccc}\text { Concentration }(M) & \mathrm{HC}_{2} \mathbf{H}_{3} \mathbf{O}_{2}(a q)+\mathbf{H}_{2} \mathbf{O}(l)& \rightleftharpoons \mathbf{H}_{3} \mathbf{O}^{+}(a q)&+\mathrm{C}_{2} \mathbf{H}_{3} \mathbf{O}_{2}{ }^{-}(\text {aq }) \\ \text { Starting } & 0.10 & 0.010 & 0 \\ \text { Change } & -x & +x & +x \\ \text { Equilibrium } & 0.10-x & 0.010+x & x\end{array}

STEP 2 You substitute into the equilibrium-constant equation

\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=K_{a}

obtaining

\frac{(0.010+x) x}{0.10-x}=1.7 \times 10^{-5}

STEP 3 To solve this equation, assume that x is small compared with 0.010 . Then

\begin{gathered} 0.010+x \simeq 0.010 \\ 0.10-x \simeq 0.10 \end{gathered}

The equation becomes

\frac{0.010 x}{0.10} \simeq 1.7 \times 10^{-5}

Solving for x, you get

x=1.7 \times 10^{-5} \times \frac{0.10}{0.010}=1.7 \times 10^{-4}

(Check that x can indeed be neglected in 0.010+x and 0.10-x.) The degree of ionization of \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} is x / 0.10=\mathbf{0 . 0 0 1 7}. This is much smaller than the value for 0.10  M  \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(0.013), because the addition of \mathrm{HCl} represses the ionization of \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}.

Related Answered Questions