Question 19.10: Calculating ΔG° and K at Various Temperatures a. What is ΔG°...

Calculating \Delta G^{\circ} and K at Various Temperatures

a. What is \Delta G^{\circ} at 1000^{\circ} \mathrm{C} for the following reaction?

\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)

Is this reaction spontaneous at 1000^{\circ} \mathrm{C} and 1 \mathrm{~atm} ?

b. What is the value of K_{p} at 1000^{\circ} \mathrm{C} for this reaction? What is the partial pressure of \mathrm{CO}_{2} ?

PROBLEM STRATEGY

a. Calculate \Delta H^{\circ} and \Delta S^{\circ} at 25^{\circ} \mathrm{C} using standard enthalpies of formation and standard entropies. Then substitute into the equation for \Delta G_{T}^{\circ}.

b. Use the value of \Delta G_{T}^{\circ} to find K\left(=K_{p}\right), as in Example 19.8.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. From Tables 6.2 and 19.1, you have

\begin{aligned} & \mathrm{CaCO}_{3}(s) &\rightleftharpoons &\mathrm{CaO}(s)&+\mathrm{CO}_{2}(g) \\ & \Delta H_{f}^{\circ}:-1206.9 \quad &&-635.1 \quad &-393.5 \mathrm{~kJ} \\ & S^{\circ}: & 92.9 & 38.2 & 213.7 \mathrm{~J} / \mathrm{K} \end{aligned}

You calculate \Delta H^{\circ} and \Delta S^{\circ} from these values.

\begin{gathered} \Delta H^{\circ}=[(-635.1-393.5)-(-1206.9)] \mathrm{kJ}=178.3 \mathrm{~kJ} \\ \Delta S^{\circ}=[(38.2+213.7)-(92.9)] \mathrm{J} / \mathrm{K}=159.0 \mathrm{~J} / \mathrm{K} \end{gathered}

Now you substitute \Delta H^{\circ}, \Delta S^{\circ}(=0.1590 \mathrm{~kJ} / \mathrm{K}), and T(=1273 \mathrm{~K}) into the equation for \Delta G_{T}^{\circ}.

\Delta G_{T}^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=178.3 \mathrm{~kJ}-(1273 \mathrm{~K})(0.1590 \mathrm{~kJ} / \mathrm{K})=\mathbf{- 2 4 . 1} \mathbf{k J}

Because \Delta G_{T}^{\circ} is negative, the reaction should be spontaneous at 1000^{\circ} \mathrm{C} and 1 \mathrm{~atm}

b. Substitute the value of \Delta G^{\circ} at 1273 \mathrm{~K}, which equals -24.1 \times 10^{3} \mathrm{~J}, into the equation relating \ln K and \Delta G^{\circ}.

\begin{aligned} \ln K & =\frac{\Delta G^{\circ}}{-R T}=\frac{-24.1 \times 10^{3}}{-8.31 \times 1273}=2.278 \\ K & =K_{p}=e^{2.278}=\mathbf{9 . 7 6} \end{aligned}

K_{p}=P_{\mathrm{CO}_{2}} \text {, so the partial pressure of } \mathrm{CO}_{2} \text { is } \mathbf{9 . 7 6} \mathbf{a t m} \text {. }

Related Answered Questions