Californium (Cf) is a synthetic radioactive transuranic element in the actinide series with an atomic number Z of 98 and 20 known radioisotopes. Of these only Cf-252, as an intense neutron emitter, is of commercial interest and was found useful in a wide range of specialized areas of science, industry, and medicine, such as the study of fission, neutron activation analysis, neutron radiography, well logging, nuclear reactor start up, and brachytherapy of cancer.
Californium-252 decays through two radioactive decay modes: (1) α decay with half life \left(t_{1/2}\right)_α = 2.73 years and branching fraction (ratio) of 0.969 and (2) spontaneous fission accompanied by emission of neutrons with half life of (t_{1/2})_{SF} = 85.5 years and branching fraction (ratio) of 0.031. Mean neutron fraction \bar{f}_n, i.e., the mean number of neutrons emitted per each spontaneous fission decay is \bar{f}_n = 3.8.
(a) Determine the effective half-life \left(t_{1 / 2}\right)_{\text {eff }} \text { of a }{ }_{98}^{252} \mathrm{Cf} \text { neutron source. }
(b) Determine the monthly decay \text { (in \%) of a }{ }_{98}^{252} \mathrm{Cf} \text { neutron source. }
(c) Determine specific activity a_{\mathrm{SF}} \text { for spontaneous fission of }{ }_{98}^{252} \mathrm{Cf} \text {. }
(d) Determine specific activity a_\alpha \text { for } \alpha \text { decay of }{ }_{98}^{252} \mathrm{Cf} \text {. }
(e) Determine specific activity a_{\text {eff }} \text { for decay of }{ }_{98}^{252} \mathrm{Cf} \text {. }
(f) Determine the neutron production rate of { }_{98}^{252} \mathrm{Cf} \text { in number of neutrons } per second.
(g) Calculate Q value for α decay of { }_{98}^{252} \mathrm{Cf} \text { into }{ }_{96}^{248} \mathrm{Cm} \text { (curium) } and determine the kinetic energy E_{\mathrm{K}}^\alpha \text { of the emitted } \alpha \text { particle. }
(a) The effective half-life \left(t_{1/2}\right)_{eff} is calculated via the total decay constant λ of { }_{98}^{252} \mathrm{Cf} which follows the general rule of radioactivity stipulating that when more than one mode of decay is available to the radioactive nucleus (branching), the total decay constant λ is the sum of the partial decay constants λ_i applicable to each mode. We thus have
\lambda=\sum_i \lambda_i=\lambda_\alpha+\lambda_{\mathrm{SF}}=\frac{\ln 2}{\left(t_{1 / 2}\right)_\alpha}+\frac{\ln 2}{\left(t_{1 / 2}\right)_{\mathrm{SF}}}=(\ln 2)\left[\frac{1}{\left(t_{1 / 2}\right)_\alpha}+\frac{1}{\left(t_{1 / 2}\right)_{\mathrm{SF}}}\right]=\frac{\ln 2}{\left(t_{1 / 2}\right)_{\mathrm{eff}}} (9.135)
The effective half-life \left(t_{1 / 2}\right)_{\text {eff }} \text { of a }{ }_{98}^{252} \mathrm{Cf} \text { source is calculated as } follows
\frac{1}{\left(t_{1 / 2}\right)_{\mathrm{eff}}}=\frac{1}{\left(t_{1 / 2}\right)_\alpha}+\frac{1}{\left(t_{1 / 2}\right)_{\mathrm{SF}}}=\frac{1}{2.73 \mathrm{y}}+\frac{1}{85.5 \mathrm{y}}=0.378 \mathrm{y}^{-1} (9.154)
resulting in \left(t_{1 / 2}\right)_{\mathrm{eff}}=2.645 y.
(b) The monthly decay (in %) of a { }_{98}^{252} \mathrm{Cf} neutron source is calculated by assuming exponential source decay and an effective half-life \left(t_{1/2}\right)_{eff} = 2.645 y, as determined in (9.154). The monthly rate of source decay is expressed with the ratio I/I_0, where I_0 is the source intensity at a given distance d from the source on day 0 (time: t = 0) and I is the source intensity at the same distance d from the source on day 30 (time: t = 30 days). I/I_0 is given as follows
\frac{I}{I_0}=e^{-\frac{\ln 2}{\left(t_{1 / 2}\right) \text { eff }} t}=e^{-\frac{(\ln 2) \times 30}{2.645 \times 365}}=e^{-0.0216}=0.979 (9.155)
indicating that in one month a { }_{98}^{252} \mathrm{Cf} neutron source will decay by 2.1 %.
(c) Specific activity a_{\mathrm{SF}} \text { of }{ }_{98}^{252} \mathrm{Cf} for spontaneous fission is calculated from activity \mathcal{A}_{\mathrm{SF}} for spontaneous fission defined as \mathcal{A}_{\mathrm{SF}}=\lambda_{\mathrm{SF}} N where N stands for the number of radioactive atoms, N_{\mathrm{A}} \text { is the Avogadro number }\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right) \text {, } and A is the atomic mass number in g/mol
(d) Specific activity a_\alpha \text { of }{ }_{98}^{252} \mathrm{Cf} \text { for } \alpha decay is calculated from activity \mathcal{A}_\alpha for α decay defined as \mathcal{A}_α = λ_αN.
(e) Specific activity a_{\text {eff }} \text { of }{ }_{98}^{252} \mathrm{Cf} is simply the sum of specific activities for α decay and for spontaneous fission
a_{\mathrm{eff}}=a_\alpha+a_{\mathrm{SF}}=19.24 \mathrm{TBq} / \mathrm{s}+0.61 \mathrm{TBq} / \mathrm{g}=19.85 \mathrm{TBq} / \mathrm{g} (9.158)
We can obtain the same result calculated directly from activity \text { A of }{ }_{98}^{252} \mathrm{Cf} defined as \mathcal{A} = λN.
(f) Neutron production rate in units of g^{−1}\ ·\ s^{−1} is calculated by multiplying the specific activity a_{\mathrm{SF}} \text { of }{ }_{98}^{252} \mathrm{Cf} for spontaneous fission by the neutron factor \bar{f}_{\mathrm{n}} (defined as the mean number of neutrons produced by each spontaneous fission decay) to get
\bar{f}_{\mathrm{n}} a_{\mathrm{SF}}=3.8 \times\left(0.6143 \times 10^{12} \mathrm{~s}^{-1} \cdot \mathrm{g}^{-1}\right)=2.33 \times 10^{12} \mathrm{~s}^{-1} \cdot \mathrm{g}^{-1} (9.160)
(1) Industrial sources contain up to 50 mg of emitting of the order of ∼10^{11} neutrons per second \left[\left(50 \times 10^{-3} \mathrm{~g}\right) \times\left(2.33 \times 10^{12} \mathrm{~s}^{-1} \cdot \mathrm{g}^{-1}\right) \approx 10^{11} \mathrm{~s}^{-1}\right].
(2) High dose rate brachytherapy (HDR) source requires about 500 µg of { }_{98}^{252} \mathrm{Cf} \text { per source emitting of the order of } \sim 10^9 neutron/s \left[\left(500 \times 10^{-6} \mathrm{~g}\right) \times \left(2.33 \times 10^{12} \mathrm{~s}^{-1} \cdot \mathrm{g}^{-1}\right) \approx 10^9 \mathrm{~s}^{-1} \right].
(g) Q value for α decay of { }_{98}^{252} \mathrm{Cf} \text { into }{ }_{96}^{248} \mathrm{Cm} is calculated in a manner similar to the calculation of Q value for nuclear reactions using either (1) rest energy method or (2) binding energy method.
(1) Rest energy method for α decay: { }_{98}^{252} \mathrm{Cf} \rightarrow{ }_{96}^{248} \mathrm{Cm}+\alpha.
(2) Binding energy method for α decay: { }_{98}^{252} \mathrm{Cf} \rightarrow{ }_{96}^{248} \mathrm{Cm}+\alpha.
(3) Q value of the α decay is shared between the α particle and the recoil Cm-248 nucleus in inverse proportions to the rest energies, so that α particle receives about 98 % of the energy available in Q value.