At the specified plane,
cA,L=1.0×10−6m3kgmolA
and
pA,G=0
A sketch of the partial pressure of A vs. concentration of A reveals this is a stripping operation. By equation (29-17)
KL1=HkG1+kL1=(10kgmol/m3atm)(0.01m2⋅s⋅atmkgmol)1+5×10−4m2⋅s⋅kgmol/m3kgmol1
KL=4.97×10−4m2⋅s⋅kgmol/m3kgmol
The equilibrium concentrations are
cA∗=HpA,GpA∗=HcA,L=10kgmol/m3atm0 atm=0m3kgmol=(10kgmol/m3atm)(1×10−6m3kgmol)=1×10−5 atm
The flux of A for this stripping operation is
NA=KL(cA,L−cA∗)=(4.97×10−4sm)(1.0×10−6m3kgmol)=4.97×10−10m2⋅skg mol
The overall mass-transfer coefficient, KG can be determined in two ways.
KG=pA∗−pA,GNA=1×10−5 atm−04.97×10−10m2⋅skgmol=4.97×10−5m2⋅s⋅atmkgmol
If we multiply both sides of equation (29-17) by Henry’s law constant, H, and relate the results to equation (29-16), we obtain
KLH=kG1+kLH=KG1
KG1=kG1+kLm (29-16)
then
KG=HKL=10 atm/(kgmol/m3)4.97×10−4m2⋅s⋅(kgmol/m3)kgmol=4.97×10−5m2⋅s⋅atmkg mol.