Question 29.4: Awastewater stream is introduced to the top of a mass-transf...

A wastewater stream is introduced to the top of a mass-transfer tower where it flows countercurrent to an air stream. At one point in the tower, the wastewater stream contains 1×103 g mol A/m31 \times 10^{-3} \mathrm{~g} \mathrm{~mol} \mathrm{~A} / \mathrm{m}^{3} and the air is essentially free of any AA. At the operating conditions within the tower, the film mass-transfer coefficients are kL=5×104 kg/mol/m2s(kgmol/m3)k_{L}=5 \times 10^{-4} \mathrm{~kg} / \mathrm{mol} / \mathrm{m}^{2} \cdot \mathrm{s} \cdot\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right) and kG=0.01 kg mol/m2satmk_{G}=0.01 \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}. The concentrations are in the Henry’s law region where pA,i=HcA,ip_{A, \mathrm{i}}=H c_{A, \mathrm{i}} with H=10 atm/(kgmol/m3)H=10 \mathrm{~atm} /\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right). Determine

(a) the overall mass flux of AA.

(b) the overall mass-transfer coefficients, KLK_{L} and KGK_{G}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

At the specified plane,

cA,L=1.0×106kgmolAm3c_{A, L}=1.0 \times 10^{-6} \frac{\mathrm{kg} \mathrm{mol} \mathrm{A}}{\mathrm{m}^{3}}

and

pA,G=0p_{A, G}=0

A sketch of the partial pressure of A vs. concentration of A reveals this is a stripping operation. By equation (29-17)

1KL=1HkG+1kL=1(10atmkgmol/m3)(0.01kgmolm2satm)+15×104kgmolm2skgmol/m3 \begin{aligned} \frac{1}{K_{L}} & =\frac{1}{H k_{G}}+\frac{1}{k_{L}} \\ & =\frac{1}{\left(10 \frac{\mathrm{atm}}{\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}\right)\left(0.01 \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}}\right)}+\frac{1}{5 \times 10^{-4} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}} \end{aligned}

KL=4.97×104kgmolm2skgmol/m3 K_{L}=4.97 \times 10^{-4} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}

The equilibrium concentrations are

cA=pA,GH=0 atm10atmkgmol/m3=0kgmolm3pA=HcA,L=(10atmkgmol/m3)(1×106kgmolm3)=1×105 atm \begin{aligned} c_{A}^{*}=\frac{p_{A, G}}{H} & =\frac{0 \mathrm{~atm}}{10 \frac{\mathrm{atm}}{\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}}=0 \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{3}} \\ p_{A}^{*}=H c_{A, L} & =\left(10 \frac{\mathrm{atm}}{\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}}\right)\left(1 \times 10^{-6} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{3}}\right) \\ & =1 \times 10^{-5} \mathrm{~atm} \end{aligned}

The flux of AA for this stripping operation is

NA=KL(cA,LcA)=(4.97×104ms)(1.0×106kgmolm3)=4.97×1010kg  molm2s \begin{aligned} N_{A}=K_{L}\left(c_{A, L}-c_{A}^{*}\right) & =\left(4.97 \times 10^{-4} \frac{\mathrm{m}}{\mathrm{s}}\right)\left(1.0 \times 10^{-6} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{3}}\right) \\ & =4.97 \times 10^{-10} \frac{\mathrm{kg}   \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s}} \end{aligned}

The overall mass-transfer coefficient, KGK_{G} can be determined in two ways.

KG=NApApA,G=4.97×1010kgmolm2s1×105 atm0=4.97×105kgmolm2satm \begin{aligned} K_{G}=\frac{N_{A}}{p_{A}^{*}-p_{A, G}} & =\frac{4.97 \times 10^{-10} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s}}}{1 \times 10^{-5} \mathrm{~atm}-0} \\ & =4.97 \times 10^{-5} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}} \end{aligned}

If we multiply both sides of equation (29-17) by Henry’s law constant, HH, and relate the results to equation (29-16), we obtain

HKL=1kG+HkL=1KG\frac{H}{K_{L}}=\frac{1}{k_{G}}+\frac{H}{k_{L}}=\frac{1}{K_{G}}

1KG=1kG+mkL\frac{1}{K_{G}}=\frac{1}{k_{G}}+\frac{m}{k_{L}} (29-16)

then

KG=KLH=4.97×104kgmolm2s(kgmol/m3)10 atm/(kgmol/m3)=4.97×105kg  molm2satm. \begin{aligned} K_{G} & =\frac{K_{L}}{H}=\frac{4.97 \times 10^{-4} \frac{\mathrm{kg} \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right)}}{10 \mathrm{~atm} /\left(\mathrm{kg} \mathrm{mol} / \mathrm{m}^{3}\right)} \\ & =4.97 \times 10^{-5} \frac{\mathrm{kg}   \mathrm{mol}}{\mathrm{m}^{2} \cdot \mathrm{s} \cdot \mathrm{atm}} . \end{aligned}

Related Answered Questions