A channel section UPN 220 is subjected to a bending moment M = 2 kN·m oriented at an angle θ = 10° to the z axis (Fig. 6-30).
Calculate the bending stresses σ_A ~and ~ σ_B at points A and B, respectively, and determine the position of the neutral axis.
Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
1, 2. Conceptualize, Categorize:
Properties of the cross section: The centroid C is located on the axis of symmetry (the z axis) at a distance
\quad\quad\quad\quad c = 2.14 ~cm
from the back of the channel (Fig. 6-31)4.The y and z axes are principal centroidal axes with moments of inertia:
\quad\quad I_{y}=197\,{\mathrm{cm}}^{4}\quad I_{z}=2690\,\,{\mathrm{cm}}^{4}
Also, the coordinates of points A, B, D, and E are
Bending moments: The bending moments about the y and z axes (Fig. 6-31a) are
M_{y}=M\sin\ \theta=(2\operatorname{kN}\cdot\operatorname{m})(\sin\ 10^{\circ})=0.347 \operatorname{kN}\cdot\operatorname{m} \\ M_{z}=M\sin\ \theta=(2\operatorname{kN}\cdot\operatorname{m})(\cos\ 10^{\circ})=1.97 \operatorname{kN}\cdot\operatorname{m}
3. Analyze:
Bending stresses: Now calculate the stress at point A from Eq. (6-39):
\sigma_{A}\,=\,\frac{M_{y}z_{A}}{I_{y}}\, – \frac{M_{z}y_{A}}{I_{z}} \\ \quad = {\frac{(0.347\mathrm{~kN}\cdot\mathrm{m})(-0.0586\;\mathrm{m})}{1.97\times10^{-6}~\mathrm{m}^{4}}} – {\frac{(1.97\mathrm{~kN}\cdot\mathrm{m})(0.110\;\mathrm{m})}{2.69\times10^{-5}~\mathrm{m}^{4}}} \\ \quad = -10.32~ MPa – 8.06~ MPa = -18.38 ~MPa
By a similar calculation, the stress at point B is
\sigma_{B}\,=\,\frac{M_{y}z_{B}}{I_{y}}\, – \frac{M_{z}y_{B}}{I_{z}} \\ \quad = {\frac{(0.347\mathrm{~kN}\cdot\mathrm{m})(0.0214\;\mathrm{m})}{1.97\times10^{-6}~\mathrm{m}^{4}}} – {\frac{(1.97\mathrm{~kN}\cdot\mathrm{m})(-0.110\;\mathrm{m})}{2.69\times10^{-5}~\mathrm{m}^{4}}} \\ \quad = 3.77 ~MPa + 8.06 ~MPa = 11.83~ MPa
These stresses are the maximum compressive and tensile stresses in the beam.
The normal stresses at points D and E also can be computed using the procedure shown. Thus,
\quad\quad \sigma_{D}=-4.29\,\mathrm{MPa},\,\,\,\,\sigma_{E}=-2.27\,\mathrm{MPa}
The normal stresses acting on the cross section are shown in Fig. 6-31b.
Neutral axis: The angle β that locates the neutral axis [Eq. (6-41)] is found as
\tan\;\beta= \frac{y}{z} = \frac{I_{z}}{I_{y}}\;\tan\;\theta=\frac{2690\;\mathrm{cm}^{4}}{197\,\mathrm{cm}^{4}}\,\mathrm{tan}\;10^{\circ}=2.408\;\;\;\beta=67.4^{\circ}
The neutral axis nn is shown in Fig. 6-31, and note that points A and B are located at the farthest distances from the neutral axis, thus confirming that σ_A ~ and ~ σ_B are the largest stresses in the beam.
4. Finalize: In this example, the angle β between the z axis and the neutral axis is much larger than the angle θ (Fig. 6-31) because the ratio I_z /I_y is large.
The angle β varies from 0 to 67.4° as the angle θ varies from 0 to 10°. As discussed previously in Example 6-5 of Section 6.4, beams with large I_z /I_y ratios are very sensitive to the direction of loading. Thus, beams of this kind should be provided with lateral support to prevent excessive lateral deflections.
Table F-3 | |||||||||||||
Properties of European Standard Channels | |||||||||||||
Designation | Mass per meter |
Area of section |
Depth of section |
Width of section |
Thickness | Strong axis 1-1 | Weak axis 2-2 | C cm | |||||
G kg/m |
A | h | b | t_w | t_f | I_1 | s_1 | r_1 | I_2 | s_2 | r_2 | ||
kg/m | cm^2 | mm | mm | mm | mm | cm^4 | cm^3 | cm | cm^4 | cm^3 | cm | ||
UPN 400 | 71.8 | 91.5 | 400 | 110 | 14 | 18 | 20350 | 1020 | 14.9 | 846 | 102 | 3.04 | 2.65 |
UPN 380 | 63.1 | 80.4 | 380 | 102 | 13.5 | 16 | 15760 | 829 | 14 | 615 | 78.7 | 2.77 | 2.38 |
UPN 350 | 60.6 | 77.3 | 350 | 100 | 14 | 16 | 12840 | 734 | 12.9 | 570 | 75 | 2.72 | 2.4 |
UPN 320 | 59.5 | 75.8 | 320 | 100 | 14 | 17.5 | 10870 | 679 | 12.1 | 597 | 80.6 | 2.81 | 2.6 |
UPN 300 | 46.2 | 58.8 | 300 | 100 | 10 | 16 | 8030 | 535 | 11.7 | 495 | 67.8 | 2.9 | 2.7 |
UPN 280 | 41.8 | 53.3 | 280 | 95 | 10 | 15 | 6280 | 448 | 10.9 | 399 | 57.2 | 2.74 | 2.53 |
UPN 260 | 37.9 | 48.3 | 260 | 90 | 10 | 14 | 4820 | 371 | 9.99 | 317 | 47.7 | 2.56 | 2.36 |
UPN 240 | 33.2 | 42.3 | 240 | 85 | 9.5 | 13 | 3600 | 300 | 9.22 | 248 | 39.6 | 2.42 | 2.23 |
UPN 220 | 29.4 | 37.4 | 220 | 80 | 9 | 12.5 | 2690 | 245 | 8.48 | 197 | 33.6 | 2.3 | 2.14 |
UPN 200 | 25.3 | 32.2 | 200 | 75 | 8.5 | 11.5 | 1910 | 191 | 7.7 | 148 | 27 | 2.14 | 2.01 |
UPN 180 | 22 | 28 | 180 | 70 | 8 | 11 | 1350 | 150 | 6.95 | 114 | 22.4 | 2.02 | 1.92 |
UPN 160 | 18.8 | 24 | 160 | 65 | 7.5 | 10.5 | 925 | 116 | 6.21 | 85.3 | 18.3 | 1.89 | 1.84 |
UPN 140 | 16 | 20.4 | 140 | 60 | 7 | 10 | 605 | 86.4 | 5.45 | 62.7 | 14.8 | 1.75 | 1.75 |
UPN 120 | 13.4 | 17 | 120 | 55 | 7 | 9 | 364 | 60.7 | 4.62 | 43.2 | 11.1 | 1.59 | 1.6 |
UPN 100 | 10.6 | 13.5 | 100 | 50 | 6 | 8.5 | 206 | 41.2 | 3.91 | 29.3 | 8.49 | 1.47 | 1.55 |
UPN 80 | 8.64 | 11 | 80 | 45 | 6 | 8 | 106 | 26.5 | 3.1 | 19.4 | 6.36 | 1.33 | 1.45 |
Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes. 2. The distance c is measured from the centroid to the back of the web. 3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis. |