Question 6.7: A channel section UPN 220 is subjected to a bending moment M......

A channel section UPN 220 is subjected to a bending moment M = 2 kN·m oriented at an angle θ = 10° to the z axis (Fig. 6-30).
Calculate the bending stresses σ_A  ~and ~ σ_B at points A and B, respectively, and determine the position of the neutral axis.

6.30
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
1, 2. Conceptualize, Categorize:
Properties of the cross section: The centroid C is located on the axis of symmetry (the z axis) at a distance
\quad\quad\quad\quad c = 2.14 ~cm
from the back of the channel (Fig. 6-31)4.The y and z axes are principal centroidal axes with moments of inertia:
\quad\quad I_{y}=197\,{\mathrm{cm}}^{4}\quad I_{z}=2690\,\,{\mathrm{cm}}^{4}
Also, the coordinates of points A, B, D, and E are

\quad\begin{array}{c c} y_A = 110 ~mm ~~ z_A = – 80~ mm  +  21.4~ mm  =  -58.6 ~mm \\ \quad\quad\quad y_B = – 110 ~mm ~~~ z_B  =  21.4 ~mm \\ \quad y_{D}=y_{A},~\;z_{D}=z_{B}\\ y_{E}=y_{B},~\;z_{E}=z_{A}\end{array}

Bending moments: The bending moments about the y and z axes (Fig. 6-31a) are
M_{y}=M\sin\ \theta=(2\operatorname{kN}\cdot\operatorname{m})(\sin\ 10^{\circ})=0.347 \operatorname{kN}\cdot\operatorname{m} \\  M_{z}=M\sin\ \theta=(2\operatorname{kN}\cdot\operatorname{m})(\cos\ 10^{\circ})=1.97 \operatorname{kN}\cdot\operatorname{m}
3. Analyze:
Bending stresses: Now calculate the stress at point A from Eq. (6-39):

\sigma_{x}={\frac{M_y{z}}{I_{y}}} – {\frac{M_{z}y}{I_{z}}}={\frac{(M\sin\theta)z}{I_{y}}} – {\frac{(M\cos\theta)y}{I_{z}}}\qquad\qquad(6.39)

\sigma_{A}\,=\,\frac{M_{y}z_{A}}{I_{y}}\, – \frac{M_{z}y_{A}}{I_{z}} \\ \quad = {\frac{(0.347\mathrm{~kN}\cdot\mathrm{m})(-0.0586\;\mathrm{m})}{1.97\times10^{-6}~\mathrm{m}^{4}}} – {\frac{(1.97\mathrm{~kN}\cdot\mathrm{m})(0.110\;\mathrm{m})}{2.69\times10^{-5}~\mathrm{m}^{4}}} \\ \quad = -10.32~ MPa – 8.06~ MPa = -18.38 ~MPa
By a similar calculation, the stress at point B is
\sigma_{B}\,=\,\frac{M_{y}z_{B}}{I_{y}}\,  –  \frac{M_{z}y_{B}}{I_{z}} \\ \quad = {\frac{(0.347\mathrm{~kN}\cdot\mathrm{m})(0.0214\;\mathrm{m})}{1.97\times10^{-6}~\mathrm{m}^{4}}}  –  {\frac{(1.97\mathrm{~kN}\cdot\mathrm{m})(-0.110\;\mathrm{m})}{2.69\times10^{-5}~\mathrm{m}^{4}}} \\ \quad = 3.77 ~MPa + 8.06 ~MPa = 11.83~ MPa
These stresses are the maximum compressive and tensile stresses in the beam.
The normal stresses at points D and E also can be computed using the procedure shown. Thus,
\quad\quad \sigma_{D}=-4.29\,\mathrm{MPa},\,\,\,\,\sigma_{E}=-2.27\,\mathrm{MPa}
The normal stresses acting on the cross section are shown in Fig. 6-31b.
Neutral axis: The angle β that locates the neutral axis [Eq. (6-41)] is found as
\tan\;\beta= \frac{y}{z} = \frac{I_{z}}{I_{y}}\;\tan\;\theta=\frac{2690\;\mathrm{cm}^{4}}{197\,\mathrm{cm}^{4}}\,\mathrm{tan}\;10^{\circ}=2.408\;\;\;\beta=67.4^{\circ}
The neutral axis nn is shown in Fig. 6-31, and note that points A and B are located at the farthest distances from the neutral axis, thus confirming that σ_A  ~ and ~ σ_B are the largest stresses in the beam.
4. Finalize: In this example, the angle β between the z axis and the neutral axis is much larger than the angle θ (Fig. 6-31) because the ratio I_z /I_y is large.
The angle β varies from 0 to 67.4° as the angle θ varies from 0 to 10°. As discussed previously in Example 6-5 of Section 6.4, beams with large I_z /I_y ratios are very sensitive to the direction of loading. Thus, beams of this kind should be provided with lateral support to prevent excessive lateral deflections.

Table F-3
Properties of European Standard Channels
Designation Mass
per
meter
Area
of
section
Depth
of
section
Width
of
section
Thickness Strong axis 1-1  Weak axis 2-2 C cm
G
kg/m
A h b t_w t_f I_1 s_1 r_1 I_2 s_2 r_2
kg/m cm^2 mm mm mm mm cm^4 cm^3 cm cm^4 cm^3 cm
UPN 400 71.8 91.5 400 110 14 18 20350 1020 14.9 846 102 3.04 2.65
UPN 380 63.1 80.4 380 102 13.5 16 15760 829 14 615 78.7 2.77 2.38
UPN 350 60.6 77.3 350 100 14 16 12840 734 12.9 570 75 2.72 2.4
UPN 320 59.5 75.8 320 100 14 17.5 10870 679 12.1 597 80.6 2.81 2.6
UPN 300 46.2 58.8 300 100 10 16 8030 535 11.7 495 67.8 2.9 2.7
UPN 280 41.8 53.3 280 95 10 15 6280 448 10.9 399 57.2 2.74 2.53
UPN 260 37.9 48.3 260 90 10 14 4820 371 9.99 317 47.7 2.56 2.36
UPN 240 33.2 42.3 240 85 9.5 13 3600 300 9.22 248 39.6 2.42 2.23
UPN 220 29.4 37.4 220 80 9 12.5 2690 245 8.48 197 33.6 2.3 2.14
UPN 200 25.3 32.2 200 75 8.5 11.5 1910 191 7.7 148 27 2.14 2.01
UPN 180 22 28 180 70 8 11 1350 150 6.95 114 22.4 2.02 1.92
UPN 160 18.8 24 160 65 7.5 10.5 925 116 6.21 85.3 18.3 1.89 1.84
UPN 140 16 20.4 140 60 7 10 605 86.4 5.45 62.7 14.8 1.75 1.75
UPN 120 13.4 17 120 55 7 9 364 60.7 4.62 43.2 11.1 1.59 1.6
UPN 100 10.6 13.5 100 50 6 8.5 206 41.2 3.91 29.3 8.49 1.47 1.55
UPN 80 8.64 11 80 45 6 8 106 26.5 3.1 19.4 6.36 1.33 1.45
Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

 

6.31.1
6.31.2

Related Answered Questions

Question: 6.2

Verified Answer:

Use a four-step problem-solving approach. Combine ...
Question: 6.1

Verified Answer:

Use a four-step problem-solving approach. 1. Conce...